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ELECTRIC FIELDS OF NEUTRON STARS 

A. I. TSYGAN 

A. F. Ioffe lnstitute of Physics and Technology, 194021, St. Petersburg, Russia 

(17July 1988) 

Theoretical aspects of the electric fields of magnetized neturon stars are reviewed. A fundamental role 
of the General Relativity effect of dragging inertial reference frames in generating electric fields and 
accelerating relativistic particles by neutron stars (pulsars) is emphasized. An allowance for this effect 
in the framework of the Goldreich-Julian model (For the regime of free plasma ejection from the 
neutron star surface) leads to the electric field enhancement by two orders of matnitude, as compared 
to the flat space-time case. 

KEY WORDS Neutron stars, electric fields, general relativity. 

1. ELECTRIC FIELD NEAR A ROTATING NEUTRON STAR IN 
VACUUM 

A model of a rotating conducting sphere with a dipole magnetic field B = 
[3 i i ( r i i i i )  - rii]/r3 (where & is the magnetic dipole moment, ii = F/r) is commonly 
used for a study of an electric field of a neutron star (NS). Deutsch (1955) 
calculated the electric and magnetic fields in the rest frame at any distance from 
the rotating sphere. However, it is convenient to have a solution in a NS 
corotating frame in order to study charged particle acceleration or their filling the 
NS magnetosphere. In the quasistatic region (Qr  << c )  of the corotating frame, 
the electric field is time-independent and possesses an electrostatic potential that 
obeys the following equation (Goldreich and Julian, 1969): 

A@ = - 4 n ( p  + peff); = -grad @, 
1 - d i  

4n 2nc 
peff = -div(g x B) =-, 

where g = (6 X F)/c and d is the angular velocity of the sphere. If the sphere 
rotates in vacuum, then p = 0 qutside the sphere, and the electric field vanishes 
inside the conducting sphere, E = 0, @ = #1 = const. A solution of Eq. (1) that 
satisfies the boundary conditions # I r Z u  = @ I r - -  = 0 is (Tsygan, 1980) 

where a is the sphere radius. The surface charge density induced on the sphere is 

1 $1 3(dZ)(&ii> - 66 
(3) 6nca2 
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226 A. I .  TSYGAN 

The absence of the electric field inside the sphere means that the electric charge is 
induced within_ the sphere, with the charge density of p = -pfR= - 
(1/4n) div(g x B). The total charge of the sphere equals 

Q = I a d S  -z div(g X g) dV = a d S  -- (g x i ) Z  dS. 'I I 4n ' I  (4) 

For an uncharged sphere (Q = 0), one obtains @, = -2(6&)/3ca.  The electric 
field in the rotating reference frame is 

1 
cr2 

-- {6(&Z) + &(6ii) +.'[(&Ti) - 3(6Z) (& i i ) ] } .  

The transition to the inertial (laboratory) reference frame is performed via the 
transformation 

E = E - t ' i i x r ; ;  C g = h x F .  (6) 

In this case ? = 7' (below we shall omit prime assuming 7 to be the radius vector 
in the lab reference frame): 

a' 
cr 

E =x {B(&Z) + &(hZ) + Z[(b&) - 5(C2ii)(&Z)]} 

1 
cr- 

+ 7 {6(&Z) - &(szZ)}. (7) 

This expression for E coincides with the expression given by Deutsch (1955) in 
the quasistatic region. For a NS with B - 10l2 G ,  52 - 10 s, a - 10 km, we obtain 
E - (522a/c)B - 3 x 10' CGSE. This electric field is capable of ejecting charged 
particles from the NS surface. The ejected particles will form a NS magneto- 
sphere even if it was absent earlier. 

2.  NS ELECTRIC FIELD IN THE PRESENCE OF THE 
MAGNETOSPHERE 

Let us consider a NS surrounded by a corotating magnetosphere. The magneto- 
sphere was introduced into the physics of radiopulsars by Goldreich and Julian 
(1969). 

For Qr << c ,  the magnetospheric electric charge density is p = -peE = -68B2nc. 
The charge density defined in such a way cancels the electric field in the rotating 
reference frame in a closed magnetosphere. Ruderman and Sutherland (1975) 
assumed that the work of exit of ions (e.g., of iron) off the NS surface is about 
10 keV. If the temperature of the NS polar caps is lower than 1 keV, then the 
thermoemission of ions in the regions of open magnetic field lines is suppressed, 
and these regions are not filled with the plasma. For simplicity, one assumes that 
magnetic field lines at the cone bottom are perpendicular to the stellar surface. 
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ELECTRIC FIELDS OF NS 227 

Consider the case of 6 = eOlh& << 1 (O0  = m c  - 1.4 x lo-’ for the pulsar 
period of P - 1 s). Inside the region of study, Eq. (1) holds, with p = 0 and with 
the boundary condition #J I s  = I$, = const at the surface and the cone bottom; it is 
convenient to choose #Jl  =O.  The above boundary conditions are fulfilled owing 
to the presence of charged particles that fill the magnetosphere, and a finite 
stellar conductivity. For ( r  - a )  >> Ro or ( q  - 1) >> O0 (RO = ae,,  is the radius of 
the cone bottom), the electrostatic potential @(q ,  5, q) and the electric field 
component El, along the magnetic field are 

44% 5, q) = 4#JOGw - 57 cos x + aeofi 5(1 - E’) sin x cos ql, 
3 $0 3 1 2 El, = --- @o-5(l - 5 )s inx cos q, 

{cos x + g e ( q )  sin x cos q} QBo 1 
Pcff =-- 2jdc q3 

16 a fi 

where q = r / a ;  5 = S / e ( q )  = S/(OOfi) ( 5  is constant along magnetic lines); 
= (Qa/c)B, ,a;  Bo is the magnetic field at the NS pole, x is the angle between 

Q and &. 
The solution near the stellar surface ( ( r  - a )  5 a or ( q  - 1) 5 1) satisfying the 

boundary conditions @I,,=, = = 0 can be written as 

where ki are positive solutions of the equation JO(kj) = 0, ki are positive solutions 
of J,(k;) = 0, and J,(z) is the Bessel function. 

Solutions (8) and (9) are matched at Bo<<(q - 1)<< 1. To prove this, one 
should take into account the relationships 

Let us notice that the electric field E - (Qa/c)”2Bo reaches maximum in a small 
region ( r  - a )  5 Ro near the neutron star, and the maximum magnitude differs 
from that in the absence of the magnetosphere by a factor of m c .  For a 
puslar with P S 1 s, the magnitude of this electric field is sufficient to generate an 
electron-positron avalanche (Ruderman and Sutherland, 1975, Sturrok, 1971). 
This produces a “vacuum” electric discharge whose top edge is formed by the 
electron-positron plasma, and the bottom edge is the neutron star surface. The 
electrostatic potential and electric field within the discharge of the height 
az, = a(qo  - 1) are 

#J = 2 # ~ ~ ) 2 ( 4 ,  - ;)(cos x + $500 sin x cos $1, 

El, = - - (zO - z)(cos x + $gel, sin x cos q), 
(11) 2@0 

a 

w i t h z = ( q - l ) < < l ;  (E-1)>5zo, El,~z=z,l=O. 
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228 A. 1. TSYGAN 

Recent calculations (Jones, 1985, Neuhauser ef al., 1987) yield a rather low 
work of exit of ions off the NS surface, about 200-300keV. For a surface 
temperature of -lo6 K in the polar regions, thermoemission of ions occurs, and a 
“free-emission” regime of charged particles becomes possible (Arons and 
Scharlemann, 1979). In the latter regime, the charged particle ejection rate in the 
region of open magnetic lines is close to that corresponding to the total screening 
of the electric field near the surface (E,I,=, = 0). Since charged particles near the 
NS surface are accelerated to relativistic energies and move along magnetic field 
lines, the electric current density can be written as 

P 
B B 

- 6  + -  

j = c p -  ; div j = cB grad-= 0. 

For ( q  - 1) >> Oo, the electrostatic potential is given by 

+(qt 5, cp) = ?+&XVG - 1 ~ 1 -  E’) sin x cos cp,  (13) 
and 

For ( q  - 1) << 1, using for the boundary conditions + I q = ,  = = 0; 
(&$/aq)I+ = 0, we obtain the solution 

+(q, 5,  q) = 3+oeP, sin x cos cp 

Solutions (13) and (14) match at 00<< ( q  - 1) << 1. Near the star, the longitudinal 
electric field component is given by 

and Ell.= 0 at the surface. For typical parameters P - 1 s and B0 - 1OI2 G ,  this 
field is insufficient for generating an electron-positron avalanche. 

3. NS ELECTRIC FIELDS WITH ACCOUNT FOR GENERAL 
RELATIVELY EFFECTS 

In the polar coordinate frame .fi = r; 2’ = 6; i3 = (with the polar axis directed 
along Q) corotating with the neutron star the gravitational field is described by 
the metric 
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ELECTRIC FIELDS OF NS 229 

where o ( r )  = 2GZc-’r-’Q; Qr  << c; K = EP,  rg = 2GM/c2 is the gravitational 
radius, M is the stellar mass, E = r,/u is the compactness parameter, fi  = Z / l o  is 
the stellar moment of inertia in units of Z,, = Mu’, and a is the radial coordinate of 
the stellar surface. ’@e nondiagonal component g03 of the metric tensor contains 
the term (-Qr’ sin’ 6) /c  associated with-the transition to the corotating reference 
frame, and also the term [o(r)r’ sin’ S ] / c  that describes the drag of inertial 
reference in the linear approximation. The dragging leads to the well known 
Lense-Thirring effect. The metric (16) can easily be obtained by linearizing the 
Kerr metric with respect to the angular drag velocity o, and by subsequent 
transition to the corotating reference frame. Notice that in the linear approxima- 
tion in Q, the rotating star can be considered as being spherical (the rotational 
oblateness is an effect of second order). 

Let us perform the transformation to the polar coordinate frame with the polar 
axis <directed along the magnetic moment &. The x-acis will be chosen to lie in 
the (Q, &)-plane. The relationship between the angles 6 and 4 and new angles 6 
and q is given by 

cos 6 = cos x cos 6 + sin x sin 6 cos q, 
sin 6 sin 6 = sin 6 sin q, 

where x is the angle between fi and 2. In the new reference frame, the metric 
(16) is 

(17) 

xp+(r ,  6, q); p = 1, 2, 3; x O = c t ,  g O , = O ,  

goo = - [ I -  ,(:)’I sin 6 (cos x sin 6 - sin x cos 6 cos q). 

Maxwell’s equations for electromagnetic field read (Landau and Lifshitz, 1975) 

- 1aE 
div E = 0; curl E = - -- ; 

c at 

- lad 4n 
div 6 = 4np; curl H = --+ -2; 

c at c 

In this case h = = 1 - (r,/r); g, = -g()p/gO(), or  
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230 A. I .  TSYGAN 

In the problem of study, the electric field is generated from the magnetic one due 
t_o the_ stellar rotation, E - gB. The g E  - g2B r_epresen_ts a second order term, or 
B = H / G .  The electric and magnetic fields, E and H, are stationary in the NS 
corotating reference frame. The term 4n?/c describes a magnetospheric current 
of charged particles. It is small and can be neglected. Then we obtain: 

div B = 0, curl(fi 6 + h i  X 6) = 0; 
div d = 4np, curl(fi i) = 0; div(fi7) = 0. (21) 

This allows us to introduce the electrostatic potential @: 

E = fi d + hg x E = -grad @, 

= -4n(p + peR), 

Equations for the electrostatic potential have been studied by Muslimov and 
Tsygan (1990a, 1990b, 1991). They generalize equations (1) to the case of a strong 
gravitational field. 

Notice that, in this section, vector operators are defined as 

a@ a@ (grad @), = ; (grad #)’” = ypv- .  
ax’*’ 

unit length, the metric at a given point is Galilean: g(W, = 1; gl, = g 2 2 = g 3 3  = -1; 
gik = 0 for i # k ,  and p,,, = 6@,,. In the Galilean frame with the metricA tensor 
fNv = b,,,,, the 3D vector components are “physical” quantities, e.g., E, = E” 
(E ,  = E , , / a ) .  In the linear approximation in Rrlc (we are interested in), 
stellar rotation does not affect the magnetic field. In the spherical coordinate 
frame with the-polar axis directed along the NS magnetic moment, the dipole 
magnetic field B reads (Ginzburg and Ozernoy, 1964) 
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ELECTRIC FIELDS OF NS 23 1 

This field corresponds to the effective charge density 

x { (1 - $) cos x + $T(q)[sin x sin 6 cos 6 cos y - sin* 6 cos xl , I 
qS)=(;-;) + ( l - ~ + q f ( $ ) ( l - - ; ) ] - ’ .  277 217 

(25) 

Using (24) ,  one can obtain an equation for the magnetic lines of the field g. The 
equation for the outermost open line in the small-angle approximation is 
(Muslimov and Tsygan, 1990b) 

Let us consider the electric field of a neutron star surrounded by the Goldreich- 
Julian magnetosphere for the case of free emission of charged particles in the 
region of open magnetic field lines. Then the boundary condition at the surface 
and the cone bottom, (pls=O, should be supplemented by the condition 
El[,=, = 0. Charged particles supplied at the hot NS surface are efficiently 
accelerated up to relativistic energies and move at the speed of light along 
magnetic field lines. The electric current density of these particles is 

All B’” 
~ ’ = c @ - = c @ -  (in ZAMO); 

H B 

p = @ ,  j = c p g f B .  

From the continuity equation, one obtains an equation for the charge density p of 
relativistic particles: 

div(fi7) = div(fi c p  -) L? = 0, 6 grad( $) fi = 0. 
B 

The solution of Eq. (28) compatible with the boundary condition for the 
potential can be written as 

where A ( g )  and D ( 5 )  are functions of lj = S/O (0 5 E I 1) to be determined 
together with (p. A general Eq. (22) for the electrostatic potential in the 
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232 A. I .  TSYGAN 

small-angle approximation is 

The solution of Eq. (30) at (q -. 1) << 1 which satisfies the boundary conditions is 

4)(% E 7  Q,) 

For (q - I )  >> Bo, one gets 

at q >> 1. 

Solutions (31) and (32) coincide at BO<< (q - 1) << 1. The first terms in (31) and 
(32), which are proportional to K = ( r g / u ) ( l / M a 2 ) ,  are associated with the 
dragging of inertial reference frames. The effect of the Schwarzschild spacetime is 
included in T ( q )  and 8(q).  The second terms in (31) and (32) transform into 
Eqs. (14) and (13) (which describe the effect of unipolar induction in the presence 
of plasma) at ~ = ( r , / a ) + O  ( T ( q ) = l ;  S ( q ) =  1/2q when 8-0). Near the NS 
surface, the electric field generated by the drag effect, 
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ELECTRIC FIELDS OF NS 233 

appears to be a factor of 

larger than the field (15) produced by the unipolar induction. For x = 0.16, 
Oo = 0.014 (P = 1 s) and 5 X 0.5, the enhancement term is -160. The electric field 
(33) is high enou h to generate an electron-positron avalanche for pulsars with 
P I  Pc(B,/lO'ZC)$", where P, = 0.5 s (Muslimov and Tsygan, 1990b). Let us 
consider the solution for the case when the electron-positron avalanche occurs 
and the discharge height zO is small, z0 = qo - 1 << Oo, in comparison with the 
polar cap radius. This case has been considered by Beskin (1990). Then the 
boundary conditions $ I q = ,  = $le=l = 0 should be supplemented by the condition 
a$/dq/,=,,, = 0 at the discharge top. In Eq. (30), one can keep the derivatives 
with respect to q only. For z = q - 1 << Oo, we obtain the following equation: 

+ ;[~e,qi)(i  + b(1)z) + 0(5)] sin x cos rp . (34) I 
For (1 - 5)  >> z(,, its solution is 

The first term in Eq. ( 3 9 ,  which is proportional to the relativistic parameter K, is 
again essential. 
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