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THE OUTFLOW REGIME OF QUASISPHERICAL 

OBJECTt 
ACCRETION ONTO A COMPACT X-RAY 

IGOR V. IGUMENSHCHEV,' ANDRE1 F. ILLARIONOV' and DMITRII 
A. KOMPANEETS' 

'Institute of Astronomy, 48 Pyatnitskaya st., Moscow, 10901 7, Russia 
'P .  N .  Lebedev Physical Institute, 84/32 Profsoyuznaya st . ,  MOSCOW, 11 7810, 

Russia 

(6 August 1992) 

We study numerically the quasispherical accretion of matter onto a relativistic object with anisotropic 
X-ray luminosity which is powered by this mass accretion. The X-rays heat the accreting gas through 
Compton scattering. When the gas temperature increases above the local escape temperature, a part 
of the accreting gas will flow outwards as a result of the action of the buoyancy force. The direction of 
the outflow coincides with the maximum of the X-ray luminosity. The depth of outflow as well as the 
velocity of the stream are correlated with the energy of X-ray quanta. The outflow is persistent, but 
the mass-loss rate is highly variable (-50%). In spite of the quantum nature of Compton heating, it 
markedly affects the gas, forcing the matter outflow even at X-ray luminosity as small as three order 
of magnitude less than the Eddington limit. The phenomena of hot gas outflow take place in the case 
of accretion onto a wind-fed X-ray source (neutron star or black hole) in a wide binary. 

KEY WORDS accretion, X-ray star, hydrodynamics. 

1. INTRODUCTION 

Galactic X-ray binaries with the luminosity L - lo3' erg s-' and active nuclei of 
galaxies and quasars with the hard X-ray and y-ray luminosity L - lo4' ergs-' 
seem to be fundamentally related to each other by the same process of energy 
release as a result of matter accretion onto the relativistic object (Zel'dovich and 
Novikov. 1971) of stellar mass M = 1 t lOM, €or a galactic source and M - 
109M, for a QSO and AGN (Lynden-Bell, 1969). In spite of the enormous 
differences in mass and distance scales, the morphology of matter flows and 
accreting gas parameters in these objects are rather similar, which is a result of 
the following points: 

i. The luminosity of these objects in hard X-ray and soft y bands is high 
( L  >> lOP3LEdd), roughly proportional to their mass M, and also variable and 
anisotropic. Here LEdd -'I 1.3 1038(M/Mo) erg s-l is the limit Eddington lumin- 
osity. The gravitational energy of the infalling matter is converted into 
radiation in the immediate vicinity of the relativistic star, r - 106(M/Mo) cm: in 

?This report is based mainly on the paper by Igumenshchev et al. (1992). 
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92 I .  V. IGUMENSHCHEV ET A L .  

small regions (polar cups) on the surface of the magnetized neutron star or at 
distances about the inner radius of the accretion disc around a black hole. The 
small distance scales, mostly flat geometry, as well as the radiation transfer 
processes in the emission region explain both the hardness of the X-ray 
spectrum and the radiation anisotropy. 
ii. The efficiency of the gravitational energy release for matter accretion at the 
rate A? onto the relativistic object is usually very high, e = L/Mc2 - 0.1. For the 
neutron star of the mass M ,  = lM, and radius r* = lo6 cm (Baym and Pethick 
1979) the efficiency e = M , G / ( r , c 2 )  ~ 0 . 1 5  is of the order of the efficiency for 
disc accretion onto rotating black hole e = 0.06 + 0.42 (Bardeen 1970). In both 
cases, it is much higher than e = lop4 for accretion onto a white dwarf of radius 
r, --- lo9 cm and also much greater than e = 0.007 for the nuclear fusion reaction 
H + He. 
iii. An enormous number of hard quanta (IV,,/N, f em,,c2/E - lo4 per accreting 
proton) of typical energy E-10keV are radiated and pass through the 
accreting gas. These quanta intensively heat the gas through Compton 
scattering up to the particle energy equal to the “average” photon energy 
E-kTc (Eq. (9)). The accreting matter, being hot and rarefied, will flow 
inwards quasispherically. However, in the case of rather higher luminosity 
L > 10-’LEdd the accreting gas is overheated by radiation which results in a 
buoyancy-forced outflow; a part of the matter flows outwards in a direction 
correlated with the X-ray anisotropy (Illarionov and Kompaneets, 1990-Paper 

iv. The accretion morphology on any scale R mainly depends on the specific 
angular momentum of matter j at that distance. The maximum scale of the 
problem is the accretion radius (Eddington, 1926), 

1). 

M 
- 3 - 10“’- cm. R,, =-- 

2MG 
W 2  Ma 

In these calculations we use a typical wind velocity or velocity dispersion value 
w = lo* cm s-’. Disc-like structures will be formed at R, in the case j = v m .  
At j << v m  the flow pattern has a quasispherical character. 

In this paper we study numerically the quasispherical matter accretion. 
Physically, this is the case of wide massive X-ray binaries (MXRB) where a 
compact star captures matter from a stellar wind from an OB companion 
(Davidson and Ostriker, 1973). More than half the observed X-ray pulsars are 
detected in such systems (Bradt and McClintock, 1983). This situation is also 
likely to occur at the scales of R - 1 pc for matter infall in slowly rotating nuclei 
of QSO and Seyfert galaxies. The quasispherical morphology of accretion flow is 
maintained from R, down to the scale of the magnetospheric radius r, = lo9 cm 
of the neutron star or down to the scale r d - j 2 / M G < < R ,  where the accretion 
disc around the relativistic star is eventually formed (due to non-zero anglular 
momentum of the gas). In the case of a black hole, the formation of an accretion 
disc (if j >> GMIc)  is of particular importance because only in this case do we 
expect the high luminosity efficiency e -0.1. If no disc forms, then we do not 
expect a high X-ray luminosity from the black hole (Shapiro and Teukolsky, 
1983). Matsuda et uf. (1990) found the high amplitude [;I>> G M / c  of variability of 
the angular momentum of matter captured from the stellar wind. In that case the 
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ACCRETION ONTO A COMPACT X-RAY OBJECT 93 

accretion disc of variable orientation can be formed allowing for a permanently 
high efficiency e - 0.1. 

Bondi (1952) investigated the case of pure spherical accretion of matter when 
the effective index ye is less than the adiabatic one, 5/3. This corresponds to 
the case of gas cooling. In the case of matter infall onto an X-ray source, the 
Compton heating increases the index ye above the adiabatic limit 5/3 of the Bondi 
theory. This drastically changes the morphology of the accretion from a spherical 
infall to a quasispherical outflowing regime. When the X-ray luminosity is greater 
than the critical value (see below), the luminosity anisotropy forced the gas 
temperature in certain directions to be greater than the value of escape 
temperature T,,, (Eq. (6)). The overheated material is then pushed outwards by 
buoyancy force forming an outflow. An appropriate estimate of the depth of the 
outflow is the Compton radius (see Paper 1) 

where the escape temperature T,,, of the gas is equal to the Compton 
temperature Tc (Eq. (9)) of X-rays. The radius rc is much less than the accretion 
scale R, in the case of hard X-rays with kTc> m,w2/10- 1 keV (for w = 
lo8 cm s-l). 

Ostriker et al. (1976), hereafter OMWY, discovered the paradox of the absence 
of solutions for steady s herical accretion of matter heated by X-rays of the 
luminosity L > L,, -- 10- LEdd through the Compton scattering. To solve this 
paradox, Bisnovatyi-Kogan and Blinnikov (1980), hereafter BB , drew attention 
to the free-free process of plasma cooling, which could fully compensate the 
Compton heating in the case of very slow matter settling and effectively made 
ye =5/3. They found a steady spherical solution at L >  Lcr. But Krolik and 
London (1983) indicate that this solution is thermally unstable for 1 > L,,. 

The paradox exists only in the case of pure spherical symmetry, and is a direct 
result of the one dimensional (radial) treatment of the accretion. However, in the 
general statement of the problem, the X-ray emission will not be isotropic. The 
anisotropy of emission causes the overheating of accreting matter is certain 
favoured directions. The accreting flow looses the spherical symmetry and 
transforms into quasispherical matter infall (see Paper 1 )  with a buoyancy forced 
matter ouflow at the luminosity L > L,, - 10-3L,,,; the same was found by 
OMWY. We did not succeed in constructing an analytical model of such accretion 
and were forced to go to numerical hydrodynamics. Two-dimensional computer 
models presented below conclusively show the existence of the outflow regime 
and enable us to analyse the parameters and features of the gas flow formed in 
these objects. 

P 

2. PHYSICAL PROCESSES IN THE MATTER ACCRETING ONTO AN 
X-RAY SOURCE 

2.1. A Spherical Model of Adiabatic Gas Accretion 
When the outflow is comparatively weak, Mout< Mi,, which is typical in our 
conditions, the physical parameters of the accreting plasma are rather similar to 
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94 I. V. IGUMENSHCHEV ET AL. 

those in the model of steady spherical accretion. We use the spherical model for 
estimations of the plasma parameters in our nonspherical case. 

In the case of the adiabatic spherical accretion of ionized hydrogen with y = 5/3 
the relationship between the plasma temperature T (or, precisely, the average 
temperature of electrons and protons T = (T, + T,) /2)  and the velocity V is given 
by the Bernoulli equations: V 2 / 2  + SkT/m, = GMIR. The integration constant is 
omitted, which is valid for small R. The stationary solution of hydrodynamic 
equations (Bondi, 1952), satisfied by the Bernoulli equation, can be written in a 
parameteric ( (Y = const) form 

The density p or the number density n = p/m, of infalling matter is related to 
the accretion rate M and to the total luminosity of the object L=eMc2 by the 
continuity equation 

1 
m- 

L - - M 
n =  

4nR 2Vm, 4nR2Vm,c2e meR”2 ’ (4) 

For (Y - 1 the sound velocity in hydrogen plasma 21, = ( ~ 2 k T / m , ) ” ~  is comparable 
with radial velocity V. The Mach number 

A4 = V / U ,  = n(3/(2 - a 2 ) ) ’ I 2  - 1 ( 5 )  
and is radius independent. For a = aH = l/lh (Hunt, 1971), the gas velocity V is 
equal to half the free-fall velocity (2CM/R)”2, the Mach number is A4 = 1 and the 
temperature T is only 25% less than the escape temperature 

GMm, T =- 
5kR ’ 

esc 

Note that the ratio TlT,,, is constant in the spherical adiabatic model 

2.2. The Compoton Heating Lind Buoyancy Forced OutJlow 

Consider the Compton heating of the accreting gas by X-rays from the 
accretion-powered central object. In the course of scattering, a fraction E2/m,c2 
of the photon energy E is gained by the electron due to the quantum effect of 
recoil. The rate of the Compton heating of electrons per unit plasma volume is 
proportional to the photon flux and to the energy gain and is given by 

T( E ) E  dE 

(7) 
c+=- HOT 

m,c2 R2 ’ 
where oT = 8nr;/3 = 6.65 . cm2, and re = e2/rnec2 = 2.83 . lo-” cm are the 
Thomson scattering cross section and the radius of electron, T(E)  is the spectral 
luminosity of XrraJs per unit solid angle &. The values of T = 1 Z(E) dE and 
L = 1 9 d Q  = eMc are, respectively, the angular and the total luminosities of the 
central source. Combining the C+-term with the electron cooling rate C- = 
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ACCRETION ONTO A COMPACT X-RAY OBJECT 95 

4na,kT,.2/(mec2R2), one has for the Compton mechanism (Peyraud, 1968) 

Tc-  T, 
tC 

C = C’ - C -  = 3nk-.  

Here the Compton temperature 

\.2( E ) E  de 

4k.2 
Tc = ’ (9) 

is determined by the “average” photon energy, the the Compton relaxation time 
is 

t 3 mec2R2 
4 OT’2 

C -  

The temperature of the plasma T tends to approach the Compton temperature 
Tc: the radiation heats plasma with T, < Tc and cools it if T, > Tc. 

It should be noted that the Compton heating, in spite of its quantum nature, 
affects the flow much stronger than the classical force of radiation pressure, 

The ratio of the corresponding rates of energy gain nVSrad/C+ = mecV/4kT,C - 
2 - lo-’ at the characteristic radius R, (see Eq. (1)). 

It was shown in Paper 1 that the condition of the outflow formation is when in 
some limited region the buoyancy force is greater than the gravity one, which is 
so when the plasma temperature exceeds the escape temperature, 

T > Tesc. (12) 
This criterion is confirmed by numerical calculations (Section 5) .  To make the 
criterion specially adapted to the Compton heating, we can consider the plasma 
temperature growth in the course of steady radial matter infall due to compres- 
sion and the Compton mechanism. The latter is responsible only for the growth in 
the ratio T /  T,,,. This ratio increases most intensively at large radii R - RA . The 
critical value of luminosity (numerically the same as in OMWY) which provides 
the growth of T/T,, ,  from the initial value 1 - a2/2  at R = RA to T/T,, ,  = 1 
inwards is (Paper 1) 

where LfEdd = LEdd/4n = GMcm,/a,  = 1037(M/M,) erg s-‘ ster-’ is the Eddington 
luminosity per unit solid angle. Numerical factors are given here and below for 
aH = l/a, w = 10’ cm s-l, kTc = 10 keV. Note that criterion .2 > TCr is more 
illustrative but is less precise than condition (12). The reason is a strong cubic 
dependence on a, whose value is specified rather arbitrarily at the outer 
boundary of the accretion flow. 

The depth of the outflow rc (see Eq. ( 2 ) )  is estimated as the point where the 
matter escape temperature T,,, is equal to the Compton temperature Tc. Below 
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96 I .  V. IGUMENSHCHEV ET AL. 

rc, where T,,,> T,, the Compton heating is unable to increase the plasma 
temperature to reach the escape value. 

As shown by Igumenshchev et al. (1992), in the case of accretion-driven 
relativistic star with a very high efficiency of the gravitational energy release, 
e - 0.1, the Compton heating is the main mechanism of energy exchange between 
accreting plasma and radiation and the role of other mechanisms of plasma 
heating and cooling are negligible or (for electron thermal conductivity) at least 
limited. The lightest, electron component of plasma is responsible for the energy 
exchange between matter and radiation as heavy protons play the role of massive 
hot background. Our numerical models are constructed allowing for the 
two-temperature plasma approximation, which is suitable in the case when the 
thermal equilibrium of both components has time to be established, but the 
thermal energy exhange between electrons and protons could be suppressed. We 
consider a range of accretion rate parameters when this approximation is valid as 
well as the hydrodynamical treatment of the accretion is adequate. 

3. NUMERICAL METHOD 

The algorithm of calculation described in Harten et al. (1987) and Harten and 
Osher (1987) forms the basis for our numerical method. Namely, we use an 
explicit second-order Eulerian method, which is a modification of the well-known 
Godunov (1959) scheme. Briefly, we are modeling the time evolution of the 
system which is described by hydrodynamic equations in the conservataive form. 
The finite-difference representation for these equations is made for the functions 
which are approximated by piecewise-linear distributions. In the determination of 
the system’s state at a moment t + h (where h is the time step), in terms of the 
known state at the moment t, the fluxes of hydrodynamic functions (density, 
momentum and energy) at the boundaries of numerical cells at the moment 
t + h / 2  have been used. These fluxes are obtained by solving the Riemann 
problem (Godunov et al., 1968). 

We suppose for simplicity that the matter accreting onto the central object is a 
fully ionized hydrogen plasma with the adiabatic index y = 5/3.  The description 
of its dynamics is made in the frame of two-temperature (q ,  for protons and T,, 
for electrons), quasineutral (np = n, = n )  plasma approximation. In the case of 
azimuthal symmetry and in the absence of angular momentum in the accreting 
matter the flow is described in cylindrical coordinates (r ,  z )  by the following 
system of equations: 

a) mass conservation, 
ap 1 a d 
- + - - ( r p u ) + - ( p v ) = O ,  
d t  r d r  dz 

b) momentum, 

,fe(0) GMpsin 0, (15) 
a I d  a 3P 

- ( p u ) + - - ( r p u ’ ) + - ( p u v ) = - - -  I-- - 
dt r dr  d z  dr ( 2&dd) R2 
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ACCRETION ONTO A COMPACT X-RAY OBJECT 97 

c) total energy E = p(u2  + v2)/2 - p G M / R  + E,  + E, of the plasma, 

dE l a  d 
- + -- (ru(E + P ) )  + - (v(E + P ) )  
d t  r d r  dz 

=C-B+--  2(e) G M p  (u sin 8 + u cos 8,) (17) 
xEdd R2 

d) internal energy E ,  of the electron component, 

1 d d 
- + - - ( r u ~ ~ ) + - ( u ~ , ) =  + C - B - Q ,  (18) 
dt  r d r  d z  r dr 

e) equation of state 

(19) p c =z& 3 e ,  Pe=nkT,,  p , = z  ?E,, P, = n k T , .  

Subscripts “e” and ‘‘p” are used here for electron and proton gases, respectively, 
p = nm, is the mass density and n is the number density of plasma particles, u and 
I,J are the r and z components of the velocity, P = P, + P, is the plasma pressure, 
R = q m  is the modulus of the radius vector, 8 is the angle between the 
radius vector and the z-axis, 0 5 8 5 n, 2 ( 8 )  is the angular distribution of the 
X-ray luminosity of the central source. The term with 2(8)/&, in Eqs 
(15)-(17) accounts for the correction for the radiative pressure force (Eq. (11)). 
The total luminosity L = 2n 2( 8)sin 8 d8 is determined by the momentary 
mass accretion rate Mi, through the inner boundary (see the next section) and by 
the efficiency of the accretion e, with 

L = eMiincz. (20) 
For numerical calculations we choose e = 0.15. The main processes of heat 
exchange are taken into account in Eqs. (17) and (18). The Compton term C is 
given by Eq. (8). For the Bremsstrralung term B, see Heitler (1944), and for the 
energy transfer from electrons to protons, Q see Landau and Lifshitz (1981). We 
suppose for simplicity that the Compton temperature Tc in the C term is angle 
independent. We choose kT, = 10 keV. Note that Coulomb collisions (Q) do not 
change the total energy of the plasma (Eq. (17)), so the appropriate term is 
present only in Eq. (18) for the internal energy of the electron component. 

For the angular distribution of the luminosity of the central source, we adopt 
one of the two forms. The first one is a narrow bipolar Gaussian, 

L e~p( - ( e /A8)~} /4nI ,  for 0 5 8 < n / 2 ,  
for n/25 8<;n, (21) x(8) = L ( ; n  - O ) ,  

where A8 is the width of the beam, with the normalisation constant 

exp{ -(8/AO)’}sin 8 d8 = 0.5 A 8  sin A 8  for A 8  < 1. 

The second distribution has wide wings and an isotropic component: 

L 
4;n 

q e )  = - ((I - X) . 3 C O S ~  8 + x), 0 % ~  5 1. 
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Thermal exchange processes are introduced in the numerical scheme by means 
of the operator splitting method (Marchuk, 1977). At the beginning of each cycle 
of calculation (i.e., the calculation of the hydrodynamic evolution on a time step 
h ) ,  the temperatures of electrons and protons are determined, which have been 
established as a result of processes C, Q and B at a time step h. This calculation is 
made with a given matter distribution, without taking into account the plasma 
motion. Next the calculation of the hydrodynamics cycle is performed. In this 
case thermal processes C,  Q and B are not taken into account. As a result, the 
new state of the system at time t + h is obtained. 

Calculations were made on a spatially homogeneous grid. The additional 
assumption of the mirror symmetry (relative to the z = O  plane) allowed us to 
make calculations in one quadrant of the meridional cross section of the size 
200 x 200 mesh points. The time step h was calculated according to the well-known 
Courant condition for explicit schemes (Courant, Friedrichs and Lewy, 1928). 

4. BOUNDARY CONDITIONS 

The problem of boundary conditions may be divided into two parts. The first one 
is the prescription of the conditions at the outer boundary of the grid. These 
conditions must allow for both an outflow and inflow of the matter. The second 
part is the setting of an absorbtion conditions for the accretting matter at the 
inner boundary which have to model the hydrodynamics in the vicinity of the 
central gravitating object. 

4.1. The Outer Boundary 

Firstly we set the criterion which permits the determination of the regions of 
matter outflow and inflow through the outer boundary: if the temperature of the 
plasma T,=i(T,+ T,)lR at the outer boundary (at the distance RR from the 
centre) exceeds the corresponding escape temperature T,,, (Eq. (6)), then the 
condition of the outflow of the heated gas is satisfied (see Paper l),  otherwise (at 
TB < (TsJB)  the inflow takes place. Obviously, this criterion is only approximate 
in the case of unsteady and non-spherical accretion. But it is in a qualitative 
agreement with the results for a spherical model (see Eq. (3)). Steady accretion 
does not occur if T > T,,,. 

For convenience, we use artificial cells which border with the region of 
calculation. The set of the boundary condition in this case reduces to the set of 
values of the velocity, density and temperature of the plasma in the artificial cells 
in the beginning of each time-step calculation. A free outflow (for TR > ( T , J B )  is 
simulated by giving the value of the velocity, density and temperature of the gas 
in the artificial cells to be the same as at the boundary. 

The definition of the conditions of matter inflow through the outer boundary 
(for TR < (T ,cc)B)  is the following. By using the value of the gas temperature in 
the boundary cells, we calculate the quantity 

ii. = min{a,, ao}, aT = (2  - 2TR/(7&)R)1’2. (23) 
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In our calculation, we take LYo = 0.4 (from the range 0 t l&) which corresponds 
to the maximum possible value of the Mach number &=0.51 (i.e., we restrict 
the regime of accretion near the boundary to be subsonic). Next we substitute h 
instead of cx into Eqs (3) of the spherical model, and determine the velocity and 
the temperature of matter in the artificial cells (which border a given boundary 
cell). The density of inflowing plasma, which is specified in the artificial cells and 
is independent of time and boundary condition, is determined by 

where 
outer boundary is limited to be less than Mo. 

is the chosen typical accretion-rate. The rate of matter input at the 

4.2. The Inner Boundary 

At the inner boundary of the numerical grid, at R = Ri, with R i ,  < r,, where the 
Compton cooling is rather effective, we use the condition of complete absorbtion, 
in which the plasma passes through the inner boundary but neglecting any 
influence of pressure from the lower layers. It is better to say that it is a sucking 
boundary. This condition is similar to the one used by Hunt (1971) in the 
numerical computation of the Bondi accretion. 

The set of absorbing boundary conditions at some radius Ri ,  is an adequate 
representation of reality only in the case of supersonic accretion in the inner 
region, when the transfer of any perturbation outwards is impossible and the 
influence of a real boundary on the inflow can be neglected. The supersonic 
accretion can take place in a cooling flow, when the cooling processes in the 
shocked gas close to the real inner boundary at R,,,, (at the radius of the 
magnetosphere of a neutron star, for instance) is so efficient that the shock wave 
cannot propagate outwards from this boundary. This is the case when the 
Compton cooling time tc (Eq. (10)) at R = Rreal is less than the time of gas 
motion below the shock through the hot shocked layer, td = AR/V, , ,  where A R  is 
the width of the heated layer and V,, is the gas velocit below the shock. 
Evaluating this dynamic time as the infall time R3'2/ 8- MG at R = Rreal, we 
compare it with the Compton time and obtain a criterion for the rate of accretion 
(or, precisely, the luminosity), at which the inflow can be described using the 
absorbing inner boundary condition: 

If this inequality is satisfied, we can formulate the absorbing boundary condition 
at Ri ,  somewhere in the region r c > R i n >  Rreal,  hoping it is adequate. For 
instance, in the problem of accretion onto a neutron star magnetosphere of the 
radius rH - 10' cm the absorbing boundary condition at Rreal = rH is adequate for 
L > 3 lo3' erg s-'. 

Otherwise (at L < Labs), the absorbtion boundary conditions at any R i ,  are not 
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a representation of the real conditions.+ In this case more complex boundary 
conditions have to be used. Any possible kind of boundary conditions will affect 
the flow parameters in its own specific manner. In this low-luminosity case, 
shocks (a time sequence of shocks) quasiperiodically move outwards away from 
the boundary R,,,,, heat the accreting matter and establish a subsonic regime of 
accretion, at least for a while. 

Note that R,,,, > 2MG/c2 and therefore Labs is at least mJm, times LEdd, and 
the criterion for outflow ( L  :> lW3LEdd) is definitely satisfied when the absorbing 
inner boundary condition holds. And finally, the instantaneous accretion rate 
onto the central object Mi, in our computations is determined at the inner 
boundary. This value is used to calculate the total luminosity L using Eq. (20). 

5 .  RESULTS 

Igumentshchev et al. (1992) discuss the results of calculations for three hydrodyn- 
amic models, performed on the same grid, with the "absorbtion" type inner 
boundary conditions for the mass of the central object M = lM,, the accretion 
efficiency e = 0.15, and the Compton temperature kTc = 10 keV. The outer 
boundary of the calculation region is taken on a square (which is caused by the 
adoption of cylindrical coordinates in the numerical method). The closest 
point of the outer boundary is place at the distance R, = 3 - 10 cm = lorc from the 
center, the Compton radius is rc = 2.8 . 1OYcm, the inner boundary is placed at 
Ri, -L 8 .  lo8 cm = 0.3rc. 

In Model 1 and Model 2 we chose the same parameter hio = 10-"'M,/yr (see 
Eq. (24)). In Model 3 ,  this is 5 times larger, M,, = 5 . lO-"'M,/yr. The anisotropy 
of luminosity for each model is specified and fixed during the calculation. For 
Models 1 and Models 2, the anisotropy is given by Eq. (22) with x = 0 for Model 
1, and x = 0.5 for Model 2. Model 3 has a Gaussian anisotropy (Eq. (21)) with 
A 0  = n/8. 

The recalculation of the results for the central mass differing from M = lM, for 
each model is trivial and reduces to the scaling of all the parameters (the 
characteristic distance, time scale, n;k, (see above), and also the resulting 
accretion rate M,,, outflow rate hiout and luminosity L )  by the same factor M / M , .  

Unstable structures such as outgoing shocks and vortex rings appear quasiperi- 
odicaly in the large-scale accretion flow and outflow. Unsteady processes do not 
affect significantly the accretion rate hi,, (the variations of the accretion rate is 
only about a few percent). In contrast, these processes have a strong effect on the 
outflow rate M,, t ,  which oscillates during the time volution with the amplitude of 
tens percent. Oblique shocks (see Landau and Lifshitz, 1959) appear near the 
base of the outflow at the distances somewhat larger than r,. The action of these 
oblique shocks results in the collimation of the accretion flow towards the center. 
During the outward propagation of the oblique shocks, a transverse shock 
appears on the closest to the central object region. 

t Any numerical results for matter accretion onto a relativistic star which have been performed with 
the absorbtion (sucking) inner boundary condition, which pretended to be hydrodynamically pure, but 
did not take into account the back influence of the luminosity on the matter flow, are incomplete. 
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Some vortex rings appear during the evolution at the border between the 
outflow and inflow regions. Their seeds originate at the distance R,,, = 3rc = 
10" cm, which is far from the outer boundary ( R A  = 3 . 10"' cm). 

To illustrate the outflow pattern, we present some results for the Model 1 at an 
arbitrarily chosen calculation time. 

The figures present the structure of the Model 1 at time t = 2224 s which is seven 
times the characteristic free-fall time ttt = R A / w .  Four maps of density and 
velocity distributions, Mach number, pressure and relative temperature are 
presented in the plane of meridional section of the gas flow. The axis Y coincides 
with the symmetry axis and the emission of the central object is concentrated near 
this direction. The axis X is placed in the equator plane. The compact object is in 
the center. The scales of the axes X and Y are given in units of 10'cm (for an 
object with the mass M = lM@). 

Figure 1: Curves of constant density and velocity field (arrows). The constant- 
density lines are spaced by A Ig p = 0.1. The direction and the length of the 
arrows correspond to the matter velocity vectors at their positions. The minimal 
level of the outflow is reached on the axis at Y = f 3 . 4 3  . lo9 cm. The outflow rate 
is kOut = 5.96 * 1014 g/s at the outer boundary. The accretion rate onto the central 
object is ki,=4.15 1015g/s. The transverse shock front can be clearly seen in 
this figure (at X = f l  10" cm, in the equatorial plane), in addition to oblique 
shocks crossing at X = f 1 . 5  . lo1(' cm, Y = 0). The equatorial accretion flow 

20 0 
-20 

x, logcrn 

Figure 1 The map of constant density and velocity in model 1. 
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Figure 2 The map of constant Mach number. 

-20 0 20 
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Figure 3 The curves of constant pressure. 
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Figure 4 The map of constant temperature ratio TIT,,,, the contour TIT,,, = 1 is shown by the thick 
lines. 

becomes subsonic after the pass of the oblique shock and accelerates again up to 
supersonic velocities passing through the points X = f 7  . lo9 cm (in the equato- 
rial plane) before reaching the Compton cooling region (R < rc). Vortex rings can 
be seen at X, Y = 2 * 10"'. 

Figure. 2: The map of constant Mach number A, with the step A A  = 0.05. The 
pattern consists of the central summit (hill), stretched along the equator (the 
value A = 1 is marked by a circle at X = 1.25 10'cm). Equatorial and axial hills 
are separated by hollows, which originate at stagnation points (Y  = f 3  * lo9 cm) 
with A = 0. 

Figure 3: Curves of constant pressure P. The step is A Ig P = 0.1. The summit 
here is the central peak. 

Figure 4: The map of constant temperature ratio T/T,,,. Contours are spaced 
by A(T/Tesc) = 0.1, the value T/T,,, = 1 is marked by thick curves. The pattern 
consists of the equatorial cavity (T/T, , ,  < 1) and smooth rises with Y increasing. 

6. DISCUSSION 

We have studied the quasispherical accretion of matter onto a compact X-ray 
source. The calculation of two-dimensional axisymmetric models of accreting 
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objects accounts for the interaction of plasma with X-rays. We have shown that 
regions with outflow exist in addition to accretion regimes. The outflow is a result 
of the Compton heating of the accreting plasma through the scattering of X-rays 
and the buoyancy force action on the overheated gas. The anisotropy of the 
radiation determines the direction of the outflow. The outflowing matter accounts 
for about -10% of the accreting matter. This value is large enough to prevent the 
Compton overheating of the main infalling part of matter. The flow is 
nonstationary ; vortices form quasiperiodically at the border between the outflow 
and the accretion region, shocks also form and move outwards. Note that these 
nonstationarities only weakly affect the variability of the accretion luminosity of 
the central object. 

The hardness of the radiation is essential as it is correlated with the depth of 
the outflow rc. The outflow velocity is correlated with the gas sound velocity at 
temperature T,, and so the particle kinetic energy in the outflow is comparable 
with the average energy of quanta. The outflow is formed if the accretion 
efficiency is high, e >> This is the case of matter infall onto a relativistic star 
only, e.g., X-ray objects in massive binaries and super-massive black holes in 
QSO and AGN. 

However, in the case of a very slow stellar wind, w < 100km s-I, as in the red 
giant case, the gas temperature behind the shock, at the RA scale, is very small 
and recombination cooling will control the morphology and gas dynamics of 
accreting flows leading to a narrow cone-like accretion column. The Compton 
heating is unable to form a massive outflow in this case. The same will be in the 
case of matter accretion onto a white dwarf. The efficiency of emission, e = lop4, 
is small and bremsstrahlung (at T > 10' K) or recombination (at T < 10' K) are 
the main cooling processes controlling the plasma thermal balance. 

The outflow regime of accretion onto a magnetized neutron star explains the 
phenomena of long-periodic (100 +- 1000 s) wind-fed X-ray pulsars in wide 
massive binaries with OB star (see Paper 1). The matter captured from wind of 
the OB star accretes quasispherically onto the neturon star. The outflow can start 
deep enough to touch the upper boundary of the magnetosphere of the neutron 
star and drags magnetic lines into the outflow. The neutron star and its 
maghetosphere corotate, so shearing of the captured magnetic field by the 
outflow provides the transfer of the angular momentum from the pulsar to the 
outflowing matter, causing the neutron star to spin down. 
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