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DISC ACCRETION ONTO MAGNETIZED 
COMPACT OBJECTS 

A. V. HOPERSKOV, JU. V. MUSTSEVAYA and V. V. MUSTSEVOJ 

Department of Physics, Volgograd State University, 2 Prodolnaya, 20, 400062 
Volgograd 

{4, November 1991) 

In a slab jet model, the influence of a strong magnetic field and density contrasts on the development 
of instabilities caused by velocity contrasts is studied in application to disc accretion onto a magnetized 
compact object. 

The perturbations propagation transverse to the magnetic field in external regions are shown not to 
be stable. Strong density contrast at the slab boundary (R = pJpJ cannot stabilize the instability of 
the acoustic resonance type (ARTI), the fundamental symmetric and antisymmetric modes being still 
unstable for any finite R. At the same time, a critical value of R exists (R - l /M2, M is the Mach 
number) at which higher reflection harmonics are stable. 

We present a comparative analysis of the ARTI and the Kelvin-Helmholtz instability which 
develops via surface modes at the interfaces between the disc material and magnetic field 
(magnetosphere). The ARTI can be responsible for the penetration of the accreting material into the 
magnetosphere. 

KEY WORDS Accretion discs, magnetohydrodynamics, hydrodynamics, instabilities. 

1. INTRODUCTION 

In the case of disc accretion onto magnetized compact objects (neutron stars and 
white dwarfs) the following situation may occur: the accretion disc (AD) material 
is rotating at the velocity Ivl = rSZ >> c.," (cS,. is the sound velocity in the AD) while 
the disc is over-pressed by the rotating magnetic field whose field lines are parallel 
to the AD plane and orthogonal to v (see Kundt & Rubnik, 1980; Anzer et al . ,  
1987; Lipunov 1980). 

Having penetrated into the magnetosphere, the matter becomes frozen into the 
magnetic field and rotates together with it at the velocity r e B .  Meanwhile, the 
relative velocity of the material in the disc and the magnetosphere may be 
supersonic in a broad region of the disc (Iuol = r(Q - Q B )  >> c,,,). The boundary 
between the AD and the magnetosphere is sharp ( d  << h, here d is the transition 
layer thickness and h is the half-thickness of the AD) due to magnetic pressure 
(Anzer et al.,  1988). Thus, a model of two parallel interfaces for the matter 
velocity, density and magnetic field contrasts seems to be appropriate. 

With supersonic interfaces, the model under consideration may support at least 
two types of instability: the magneto-hydrodynamic instability of the acoustic 
resonance type (ARTI) (see Ferrari et al.,  1982; Hardee and Norman, 1988) if 
there is some matter in the magnetosphere, or unstable surface modes at the 
interfaces between the AD and magnetic field in vacuum if there is no matter in 
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66 A. V. HOPERSKOV ET AL.  

the magnetosphere. Following Northrop (1956), Wang & Welter (1982) and 
Lipunov (1978), we call the latter the Kelvin-Helmholtz instability (KHI) .t 

Lipunov (1978) investigated the KHI for a model of two interfaces in the limit 
of incompressible medium; Wang & Welter (1982) discussed a single-interface 
model but for a compressible fluid and for arbitrary directions of vg and B. The 
ARTI in the absence of magnetic field was well studied for jets in the 
discontinuous model (cf. Ferrari et al., 1982; Hardee and Norman, 1988; Payne 
and Cohn, 1985; Hoperskov et af., 1990) and in the model with continuous 
density and velocity profiles-for A D  (Mustsevoj and Hoperskov, 1990). Bod0 et 
al. (1989) showed that the ARTI can develop in a magnetized jet with 
non-magnetic environment. 

The growth rate of the KHI can be estimated by the order of magnitude as 
Im wKHI - kv,v,,/c << Q, where v i  = B2,/(4npin). Be, is the magnetic field in 
outer regions, pin is the A D  matter density, k is the wave number along the 
interfaces, and C is the speed of light (Northrop, 1956). Since the density contrast 
R = pcx/pin can be considered small (pcx is the density of the plasma frozen into 
the magnetic field above the AD), similar estimate Im wART, << S2 seems to be 
evident. The problems which we consider here are as follows: the influence of a 
strong external magnetic field (and small I?) on the ARTI; the relation between 
the growth rates of the ART1 for R << 1 and the KHI for R = 0 when all other 
relevant parameters are equal; are the mechanisms of excitation of the ARTI and 
KHI physically different or not? 

2. THE MODEL 

In the absence of magnetic field, the transverse component of the gravity force 
stabilizes long-wave (kh << 1) perturbations of both ARTI fundamental modes 
(n = 0, see the mode classification in Section 3) and has just no influence on 
higher (n 1) harmonics (Mustsevoj and Hoperskov, 1990). However, this effect 
is significantly weaker for an A D  over-pressed by magnetic field than in the case 
discussed by these authors because of a smaller thickness of the disc and, hence, 
shorter-wavelength perturbations can be important. Since the transition region 
between the AD and the magnetosphere is thin in comparison with the disc 
thickness (d << h),  the gravity force does not participate in the equilibrium at the 
interface. For all these reasons, we should neither include the transverse 
component of the gravity force nor consider the perturbations of the wavelength 
comparable to the disc radius (but there may be kh << 1 in general). 

It is known that, in non-magnetic case, the ARTI growth rate has a maximum 
at the frequencies such that Q2/IwI2<< 1 (Hoperskov et af., 1990; Mustsevoj and 
Hoperskov, 1990). This is true in our case as well, so we neglected the effects of 
rotation recalling that rotation effects are significant for the perturbations with 
lwI2 4 Q2 (of course, we have A , ,  << r, where A,, is the perturbation wavelength 
along the disc plane). 

t We should note that terminological inconsistency is rather traditional in this field serving to 
emphasize the difference between the models. 
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ACCRETION DISCS 67 

The magnitude and direction of the internal magnetic field Bin are rather 
difficult to estimate. A model with the magnetic field pushed out of the disc (the 
diamagnetic disc), that is Bin = 0, seems to be the simplest one. If the magnetic 
field in the AD is chaotic and has a small scale being non-stationary with the time 
scale z >> l/lol (recombination of field lines, a-dynamo, etc.), then Bin contrib- 
utes into the pressure balance only and modifies the gas equation of state, so that 
the adiabatic speed of sound c.,. has to be replaced by cL," = [c:," + B~n/(4~pin)]1'2. 
In the opposite case of T S  l/lwl when the internal magnetic field is strong 
enough (Bin S Be,), our further analysis is not valid. Under certain conditions, a 
large-scale quasi-stationary magnetic field can be present in the A D  possessing 
having a dominant azimuthal component (Lominadze et al., 1985), i.e., parallel 
to the velocity. In the present paper we restrict ourselves to the simplest case of 
Bin = 0 and small-scale Bin # 0 when considering the ARTI; the case of azimuthal 
field Bin is a subject of another paper. 

Thus we consider homogeneous layers as a model for the analysis of ARTI 
adopting the following equilibrium distributions of velocity, density, sound speed 
and magnetic field: 

and v(, I Be,. 
The equilibrium pressure balance is given by 

2 where pex  and pin are the equilibrium hydrodynamic pressures ( ypcxiin = pexy,ncscx,,n 
and y is the specific heats ratio). 

Note that the case pex=O cannot be considered in the framework of 
magnetohydrodynamics; displacement current can be neglected, i.e. , mag- 
netohydrodynamic equations are applicable only when (Landau and Liftshitz, 
1982) 

B:x << pe,c2. (3) 

Wang and Welter (1982) gave a detailed derivation of the dispersion equation 
describing small oscillations of the interface between magnetic field in vacuum 
and moving MHD-fluid. Since the transition from their consideration to the 
model with two interfaces is evident enough, we shall give it in Section 4 without 
comments, noting that we have to assume pex = 0 in (l), and to substitute the 
speed of light c instead of cscx; in addition, Eq. (2) is modified by replacing p c x  by 
(Wang and Welter, 1982) 

Our consideration is valid outside the inner region of the AD, that is a1 larger 
distances from the central object and for V; << c2. 
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68 A. V. HOPERSKOV ET AL. 

3 .  THE ACOUSTIC RESONANCE TYPE INSTABILITY 

The following dispersion equation? comes from linearized non-dissipative MHD 
equations for small perturbations whose Fourier harmonics have the form 
f - exp{ ik,x + iky y + x f  - i w t }  : 

Zin 
Zex 

[th(kh/3i,)la= - -, 

where 

k = (k:+  k,2)1'2, Z. in =- Z' - Ai?, , z,,= R [ ( z  - M)' - Azx] 
Z P i n  ZPex  

, 

112 z4 

Z ' ( U ? ~  + 1) - Ai, 
) ' = (l - 

( z  - M)2(sa%x + 1) - A:x Pm=(1- 

Here Zin and Zex are the normal impedances k is the wave vector in the A D  
plane, pin = x i n / k  and Pex = xcx /k  are the dimensionless wave numbers transverse 
with respect to the AD,  R e z  is the dimensionless phase velocity of the 
perturbation, and Im z is its growth rate. The amplitude does not grow at infinity 
if we select Re PCx > 0. 

In our notation, Eq. (2 )  reduces to the following: 

R 
S =  

Y 
2 1 + - - RUE,) 

When (Y = 1, Eq. (5 )  describes even perturbed pressure functions in the middle 
layer, i.e., the symmetric (S) mode; (Y = -1 corresponds to odd functions, i.e. the 
antisymmetric (AS) mode. The spectrum of eigenfrequencies defined by Eq. (5) 
is discrete. The perturbation harmonics corresponding to these frequencies are 
usually treated as fundamental modes ( q  = 0 for the S-modes and q = 1 for the 
AS-modes) and reflection ones ( q  2 2) depending on the number of the nodes of 
the perturbed pressure eigenfunction, q, between the interfaces. For the 
S-modes, q = 2n, for the AS-modes, q = 2n + 1, with n being the harmonics 
order. 

The number of unstable modes described by Eq. ( 5 )  is, strictly speaking, 
infinite. The transition region has a finite (though small) thickness thus leading to 

t Here we suppose the disc to be at rest and the outer regions to move. In the opposite case, it is 
sufficient to introduce usual Doppler shift of the frequency. 
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ACCRETION DISCS 69 

a significant (but not total) stabilization of the short-wavelength (kh >> l ) ,  higher 
harmonics (n  >> 1) (Mustsevoj and Hoperskov, 1990), so that we may consider 
the harmonics with n = 1, 2, 3, only. 

3.1. Incompressible Fluid 

Before we specify the magnitude and direction of the magnetic field according to 
Section 2 ,  we shall write out solutions of Eq. (5) under the only assumption of 
incompressibility (cs,, large enough). Although this case is rather unrealistic since 
M >> 1 for a real AD, we shall need these results to compare them with those of 
Section 3.2 and 4. 

Putting in Eq. (5) 1zI2<< 1, M << 1 and S I Z  - MI2 << 1, we find: 

z=- [ N M  f ( ( N  + 1)(NA2x + A:n) - NM2)' /2] ,  
M + l  (7) 

where N = R th" kh , An obvious stability condition follows from Eq. (7): 
(N + l)(NA;, + Ain) > NM2.  In the limit kh- ( N -  R )  this meets the one 
obtained by Syrovatskij (Landau and Lifshitz, 1982). 

Unstable roots of Eq. (7) (those having "+" at the square root) correspond to 
the fundamental (n  =0) harmonics of S- and AS-modes, into which the 
single-interface Kelvin-Helmholtz mode splits in the case of two interfaces. The 
bending (AS-mode) perturbations are, evidently more unstable. 

1' 

3.2. The case of ain = 0 

In real accretion systems, the density contrast between the disc and the 
magnetosphere probably exceeds significantly the temperature constract: R << s. 1- 
In this case Eq. (6) implies that a z x = 2 / ( y R ) .  Aex=O for the perturbations 
propagating across the magnetic field Be, which are, consequently, the most 
unstable ones. It is easy to see that in this case Eq. (5) is equivalent (within the 
factor y / 2 -  1 at the second term under the square root in pex) to the 
non-magnetic case (cf. Hopersokv et al., 1990). 

Numerical solution of Eq. (5) demonstrates a good qualitative agreement of the 
solution considered and the hydrodynamic one for arbitrary M, R and kh. But the 
dependence of the eigen-frequencies on these parameters at R << 1 is rather 
complicated and needs some comment.$ 

1) is 
energetically allowed, with a negative wave energy flux outgoing into the 
magnetosphere. Miles (1957) and Ribner (1957) showed that the energy flux in 
the neutral waves going from the interface can be negative (that is, directed to the 
interface) whenever (in our notation) 1 < z < M - (azx + l/s)'", that is in the 
dispersive range of frequencies. This range is slightly wider for unstable 
preturbations, the upper limit going higher-see Figure 1 (see Mustsevoj, 1991, 

First of all, we note that the development of reflection modes (n  

t Note that Eq. (5) is valid only if (3) is satisfied. 
$The case of very small R seems to be hardly realistic for a hydrodynamic model, for such a density 

contrast corresponds to a very strong temperature constrast (since s = R ) ,  so that such a model is 
thermally unstable. 
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70 A. V. HOPERSKOV ET AL. 

Figure 1 Dimensionless phase velocities (a) and growth rates (b) against kh for the symmetric mode. 
Fundamental (n = 0 )  and first 8 reflection harmonics are shown. M = 10, R = 0.1, S = 1, k IIv,,, 
k I Bcx. 

for more details). In the reactive range of frequencies - M  - (& + l/s)'/* -==z< -. 
M and O G z  S 1-the perturbations appear to be the surface ones (i.e., 
exponentially decaying along the transverse coordinate without oscillations) 
whose fundamental modes have another development mechanism; the reflection 
harmonics can never exist in this region. These arguments allow to interpret 
easily the form of the growth rate, Im z ,  and phase velocity, Re  z ,  contour plots 
in the R - kh plane (Figures 2-5). 

The cut in the contour plots of the reflection harmonics (Figures 2-3) 
corresponds to the value of Rat which the reactive regions overlap, that is 
1 + (afx + l / s ) ' / ' = M  (Eq. (5) is satisfied identically at z = 1 for S, as well as 
AS-modes) and no reflection modes can exist at lower R. Note that the Im z and 
Re  z surfaces are polyvalent: the fundamental S-mode (n  = 0) splits into two 
neutral branches while crossing the cut from higher to lower R's, and while 
crossing the cut from lower to higher R's we come from the S-mode n = 0 
harmonics onto the surface of the reflection S-harmonics with IZ the greater the 
higher kh is at which we cross the cut. Below the cut (at lower kh),  only the 
fundamental mode exists. The AS-mode behaves in the same way. 
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” 

0 

- I  

-2 

-3 

-4 
-4 -3 -2 k d R )  0 

Figure 2 Contour plots of dimensionless phase velocities (a) and growth rates (b) in the R - kh plane 
velocities (a) and growth rates (b) in the R - kh plane for the fundamental (n = 0) AS-mode. M = 10, 
S = 1, k 11 v,,, k I Bex.  

Figure 4 shows Im z contour plots for the reflection S-mode harmonics n = 1, 2 
(AS-mode harmonics behave in the same way); the ranges of kh are shown for 
which a given harmonics can be obtained from the n = 0 one. These ranges lie 
between the first order branching points (see Figures 5a, b). Going clockwise 
around the mth branching point (rn = 1, 2,  3, . . .) at some small distance E from 
it we should subsequently get (for a continuous, closed path) from the I m z  (or 
Re z ,  respectively) surface of the S-mode (or AS as well) n = 0 harmonics to the 
n = rn - 1 harmonics, then to the n = rn harmonics of same mode, and return to 
the starting point of the n = 0 harmonics completing two full circlest (that is, a 
combination of Figures 2-5 appears to be, in fact, a Riemannian surface of the 
multiciphered function z (R ,  M, kh)). 

A sharp distinction in the fundamental mode behavior to the left and to the 
right from the cut (Figures 2-3) is noticeable. It can be explained by the fact that 

Strictly speaking, this occurs for m = 2 and higher while for the first (m = 1) branching point we 
come to the neutral mode instead of the n = m - 1 harmonics. 
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-3 -2 -1 0 
1 

0 

- 1  -1  

-2 -2 

-3 -3 

-4 -4 

1 

0 

- I  

-2 

-3 

-4 
-4 - .? -2 k7fR) 0 

Figure 3 Contour plots of dimensionless phase velocities (a) and growth rates (b) in the R-kh plane 
for the fundamental ( n  = 0) S-mode. M = 10, S = 1, k )I vo, k I Bex. 

for R low enough to ensure that M<(a:,+ l/s)”’, the perturbations in the 
magnetosphere become subsonic and for M << (u:, + l/s)‘/* the matter frozen into 
the magnetosphere behaves as an incompressible fluid. It is reasonable to expect 
that in this range of parameters solutions of Eq. (5) are similar to those of Eq. 
(7). In fact, Eq. (7) is an asymptotic solution of Eq.  (5) that agrees well with the 
numerical solution in this (M << (a:, + l/s)’”) range. Thus, we can state that for 
the values of R corresponding to the above range, the instability arises due to the 
Kelvin-Helmholtz mechanism (the Bernoulli effect) despite a strong compres- 
sibility in the disc (M >> 1). 

It is possible to obtain the analytical asymptotics of the eigen frequencies in the 
opposite limit of M >> (u:, + l/s)’” when the compressibility of matter is 
considerable and the instability is of the acoustic resonance type. 

For the range of short and medium wavelength (kh b l), supposing RM2 >> 1 
and M 2  >> A,?x we can obtain from Eq. (5) for the S-mode n = 0 harmonics: 

1 ib 
2(b2 + 1) +2(b2 + 1) ’ 

Z E 1 -  

where b = C”’Mkh(1- A: , /M2)  and C = R2(a:, + Us). 
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-2 -1.5 - 1  -0.5 0 

Figure 4 Contour plots of dimensionless growth rates for the n = 1 (a) and n = 2 (b) harmonics of 
the S-mode in the R - kh plane. I denotes the marginal stability curves, I I ,  the region where the 
reflection mode turns into the fundamental one. 1 ,  2, 3 are the branching points. M = 10, S = 1 ,  
k II vn, k 1 Bcx. 

For the long-wavelength (kh << 1 )  perturbations of that mode we get under the 
same assumption: 

In the same range ( M  >> 1, Mkh << l ) ,  for the AS-mode n = 0 harmonics, an 
expression follows from Eq. (5) that coincides in form with Eq. (7), but now we 
have N = Rlkh. 

For the reflection ( n 2 1 )  harmonics of both modes and the fundamental 
( n = 0 )  of the AS-mode at k h B 1 ,  1zI2>>1, R l z - M I 2 > > 1  and lz-MI2>>A:,, it 
follows from Eq. (5): 

20 - M 
2 - 2 , 1 +  { iC'/2kh[(zo - M)' -A:,] - 22, + M 

where 
n2n2 1/2 

2, = (- + 1 )  
k2h2 

for the S-mode 
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for the AS-mode 

Note that, in the particular case of A,, = 0 at uex # 0, Eq. (10) coincides with a 
similar asymptotics obtained by Morozov et ul. (1991) (where a similar model but 
without magnetic field was discussed) with C being replaced by R. The 
requirement of s > O  (with account of (6)) necessarily yields the following 
inequality: 

Y R  -<-s 1, 
2 c  

thus we can state that for k 1 1  Vg, in the parameter range considered, magnetic 
field diminishes the ART1 growth rate not more than by the factor (2/y)’” - 1. 

Eqs. (8) and (10) are valid for the values of M and kh exceeding those at which 
the growth rate is maximal. The estimate of the 
obtained by analyzing reflection coefficients at 
reflection coefficient (in pressure) at the interface 
following: 

Substituting the dispersion Eq. (5) into (12) one 

maximal growth rate can be 
the interfaces. The complex 
in the model discussed is the 

can show that 

9 = fexp{2kh(l- z2)’”}, (13) 
with the “+” sign corresponding to S, “-” to AS-modes. 

follows from Eq. (13) for them: 
Since the reflection harmonics (n 2 1) have a high frequency (Izl’>>l), it 

1 
Im z =-In 191. 

2kh 

Equation (14) shows that the growth rate is maximal at the value of 191 which 
is the largest for a given harmonics. 

Miles (1957) and Ribner (1957) showed that vanishing of the denominator of 
(12) is a necessary condition for over-reflection ((91 + m). Naturally, this 
condition can be satisfied only for neutral oscillations (Im z = 0)t and implies that 
the frequency at which this occurs is the eigen-frequency for a single (kh+w) 
interface. Since we are interested in solutions with Im z > 0, 191 may be large 
though always finite. 

The main resonance angle at which the maximum of 191 (and of the growth 
rate) occurs corresponds to that root of equation Zi, + Z,, = 0 at which xi” - x,, 
(that root is Re z = M/(1+ 1/R’/’) at a,, = 0). Supposing 1z(’>> 1, R Iz - MI’ >> 1 

t We consider an essentially supersonic case (M >> 1) when the reflection harmonics exist. At 
M 6 1 ,  to the contrary, the denominator of (12) turns into zero for a single complex-conjugate pair of 
z only. 
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and ) z  - MI2 >>A:,, we find the corresponding value of R e  z: 

M2C1I2 + 1 
2 C’l2 + 1 

Re Z = ZR 2I - [l - (1 - 4D)1’2],  

where D = (1 - A,?,/M2)C’”(C’/2 + 1)/(2C’” + 1)’. 

Substituting ( 1 5 )  into (12) represented in the form z = Z, + Im z ,  where 
Im z << zR,  we obtain an approximate expression for the “envelope” curve of the 
growth rate maxima for different harmonics of both modes: 

c.7 2C“2Mkh 1 - 2D(2C’12 + l)/C1/’ 
max(1m w )  = In In 

2h I (C”2 + 1)’ ( 1  - 4D)”2 
- 

Finally, we can get an asymptotic formula describing the marginal stability 
boundary for different reflection harmonics. The nth harmonics is stabilized at the 
following combination of parameters: 

112 112 
& X *  

2 Y ^ . M , - p  a, ,*+-+ 1 [(a:..+$) 1 4 x 3  } . Y 2  s, 
Here Y = (q2n2/k$h$ + l)’”, q = 2n - 1 for S-modes, q = 2n for AS-modes, 
IZ 2 1 .  The accuracy of Eq. (17) grows with n. In Figure 4, the dashed line shows 
the marginal stability boundary according to (17).  

Analytical and numeric results show that for the most unstable harmonics 
(AS-mode n = 0 and n = 1 t 3 of both modes) the maximum of In z occurs at 
such z that 1 . ~ 1 ~  >> 1 .  Besides, we started supposing kr >> 1 (it is more correct to 
say that the assumption A,,  << r made in Section 2 leads to stronger restriction: 
kr >>2n).  Meanwhile, the Mach number maximum (at r fixed and k 1 1  vo) never 
exceeds Mma,(r) = rQ/cS,” and Q ( r )  - rP3I2 for the regions far from the central 
object, so the inequality kr >> rQ/cS,” is valid. Therefore, Q2/1w(2 = 
Mmax(r)/(lz\  kr)’<< 1 and so the effects of rotation can be neglected indeed, as 
assumed in Section 2 .  

3.3. The Case of a Small-Scale Field ain 

If ai,#O but the field has a small scale as compared to the perturbation 
wavelength, we can assume Ain  = 0 in (5). Obviously, this case can be reduced to 
the one discussed above through transformation of variables: 

2 112 where clin = cSiJ 1 + ain) . 
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4 .  THE KELVIN-HELMHOLTZ INSTABILITY (pex  = 0) 

The dispersion equation describing the KHI in the double-interface model 
coincides in form with Eq. (5) if we introduce the following notation: 

U : , a 2 ( Z 2  - 2Mz Sin OBk M 2 )  - A:x 
Zex = 

Z P e x  
9 

The variables z, ai, and Ai, are defined as above. 
The condition (2) modified as discussed in Section 2 is 

The dispersion equation being considered (just like in Sections 3.1 and 3.2) can 
have two roots corresponding to the unstable n = 0 harmonics of both modes in 
incompressible case (csin+ m), as well as for arbitrary compressibility in the disc. 
Supposing IzI << 1 and M 6  << 1 we obtain: 

2/y + a;, = a:,(l - 6 W ) .  (18) 

The values of z given by Eq. (19) agree well with the exact solutions of the 
dispersion equation for any reasonable ranges of parameters. It is evident from 
(19) that instability occurs if F < 0. For kh + 00 (single interface) this conditions 
coincides with the one obtained by Wang and Welter (1982). 

The comparison of (19) and (7) exhibits a similar character of the instabilities 
arising in these models despite distinctions in the latter. This similarity occurs 
when the matter in the magnetosphere (in the ARTI case) behaves like an 
incompressible fluid (the range of R < [M2y/2 - (y/2 - l)/s]-’ for both ARTI 
fundamental modes and, besides, the range of k h < < l  at any R for AS 
fundamental mode) and arises because magnetic field in vacuum is equivalent to 
an incompressible fluid with the density pm = B:,/(4nc2). 

In the model considered, there can exist higher (n 5 1) harmonics, but they 
appear to be neutral. Thus, supposing 1zI2>> 1 + a;n (there exist no higher 
harmonics in the opposite limit), we obtain the solution of the form, z = 
zo( 1 + A), where: 

LK-n- J 

aZx~’(zE - 2Mz0 sin( eBk) + M 2 )  - AaX (20) 
A = =  - 

k h ( ~ ;  -A;,,) - AZX , 
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q = n + 1/2 for S-modes, q = n for AS-modes, n 3 1. This result is quite clear. In 
the case of the ARTI over-reflection of waves at the interfaces (accompanied by 
the development of unstable reflection harmonics) is possible, since energy flux in 
outgoing (into magnetosphere) transmitted wave appears to be directed to the 
interface. In the case of the KHI, this is impossible. In fact, in the reference 
frame co-moving with the disc material, electric field in vacuum is E,, = [voBex]/c, 
and hence the Pointing vector is: 

5. DISCUSSION 

Thus, the local short-wavelength analysis shows that in the case of disc accretion 
onto a magnetized compact object in the AD, besides the KHI arising at the 
interfaces between the AD material and magnetic field in vacuum (e.g. Northrop, 
1956; Wang and Welter, 1982; Lipunov, 1978), there can exist also a mag- 
netohydrodynamic ARTI, for whose development the presence of matter in the 
magnetosphere is essential. 

Then an interesting effect occurs: the unstable modes of the KHI and ARTI 
demonstrate a strong similarlity in behavior (with no dependence on the disc 
material compressibility) when the medium in the magnetosphere (magnetic 
field in a vacuum for the KHI and matter for the ARTI) acts like an 
incompressible fluid, which is true for any range of parameters in the case of the 
KHI. In the case of the ARTI, this situation appears whenever the fast 
magnetosonic velocity in the magnetosphere material exceeds the relative velocity 
of the material in the disc and magnetosphere and, besides, when the bending 
oscillation wavelength is long enough (kh << 1). Therefore, only the fundamental 
modes exist for both instability types (the higher harmonics are neutral), the 
bending mode (AS-modes with n = 0) being most unstable. It is remarkable that 
the frequencies of these modes are described by analytical expressions obtained in 
the incompressible limit (for disc material -cS,.+0) even if the disc material 
compressibility is large (M >> 1). In other words, this allows us to suggest that the 
same mechanism is responsible for the KHI and ARTI development at M << 1 as 
well as at M >> 1. 

This effect is due to a subsonic character of the perturbations in the 
magnetosphere in all cases considered above (inhomogeneous plane waves, that is 
surface modes) and subsequently, there is no energy flux along the Z coordinate 
orthogonal to the disc plane. Inside the AD the energy flux in this direction is 
also zero in that case, since the waves are stationary in the 2-coordinate (unstable 
modes of a wave guide). Consequently, the only energy source remaining for the 
instability is the pressure forces at the interfaces (the Kelvin-Helmholtz 
mechanism by itself-the Bernoulli effect). 

The ARTI mechanism appears to be fundamentally different only when the 
compressibility of material in the magnetosphere is important and the perturba- 
tions are supersonic. Then higher unstable harmonics can be supported, their 
growth rates being of the same order as that of the fundamental bending mode 
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(and, therefore, exceeding the fundamental S-mode growth rate), but for shorter 
wavelengths (or higher n). 

We should to emphasize some points we believe to be important in the results 
obtained as applied to AD stability. 

1. First of all, the ARTI growth rate exceeds the KHI one even at pcx<<pin 
(Im wKHI < Im WARTI cf. (7) and (19)). 

2. In the model being discussed (vo I B,,), external magnetic field of arbitrary 
magnitude does not stabilize the most “dangerous” perturbations (with k 11 vo) 
both for KHI and the ARTI. It seems to be significant that the perturbations with 
k ( 1  v, have the shortest (at fixed k) azimuthal wavelength and, subsequently, 
suffer less from gyroscopic effects. 

3. A good qualitative agreement in the results considered above and those for 
the hydrodynamic cases allows to state, according to Mustsevoj and Hoperskov 
(1991), that the presence of matter in the magnetosphere is essential only in the 
layer of the thickness of the order of l/lxexl close to the disc, the ARTI growth 
rate being poorly sensitive to the presence of material elsewhere in 
magnetosphere. 
4. In the case of AD, non-linear growth of the fundamental bending mode 

cannot lead to initial flow disruption (unlike the jets-see Norman and Hardee, 
1988) since the disc material is in a potential well and, hence, the fluid particle 
transverse motion is finite. 

One of the problems of accretion onto magnetized compact objects is the way 
for plasma to penetrate into the magnetic field surrounding the accreting object. 
The following scenario of this process can be proposed. At the initial stage, when 
there is no material in the magnetosphere, the KHI (or another instability-see 
Lipunov, 1987) can act as a starting mechanism. As it develops, the density in the 
magnetosphere regions close to the disc becomes finite, and the fundamental 
bending mode of the ART1 having the maximum growth rate arises. If the density 
in the above regions grows, as a result, to the values of order pex - 2pin/vE, then, 
in addition, the short-wavelength reflection harmonics of S- and AS-modes 
becomes arise which, in turn, can lead to turbulence in the disc due to the 
appearance of a hierarchy of spatial scales and perturbation frequencies. 
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