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CROSS SECTIONS 
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St. -Petemburg Institution of Textile and Light Industry, 190000 St. -Petersburg, ul. 
Gertzen 18 

(21 July 1992) 

The resonances in the cross section of Compton scattering in strong magnetic field are investigated. 
The distributions of the resonances over the Landau level number, on the energy of the initial photon 
and on the direction of the scattered photon are studied. Two methods of regularization of the 
resonances are proposed. 

KEY WORDS Compton scattering, neutron stars, radiation, magnetic fields. 

1. INTRODUCTION 

Among various interactions processes between radiation and matter in the 
presence of magnetic field, the important one is the scattering of photons by 
electrons usually called the Compton scattering as in the case when magnetic field 
is negligible. The Compton scattering in a strong magnetic field can transform the 
spectra of primary sources of radiation in the magnetospheres of neutron stars 
where the strength of the field is comparable to the critical value, B,= 
4.412 . 10” G.  The X-ray lines in the spectra of pulsars and gamma-ray lines in 
gamma-burst spectra are believed to be formed by the Compton scattering in 
magnetic field. 

General expressions for the cross sections of processes in external fields and of 
the Compton scattering in the magnetic field in particular have been obtained in 
quantum electrodynamics long ago (see, for example, Akhiezer et al. (1969)). 
However, numerical calculations without strong constraints on the field strength 
and the energies of photons and electrons appeared only after 1970. 

In the work of Herold (1979), the differential and total cross sections have been 
calculated for the case when the initial and final electrons are on the ground 
Landau level. Daugherty and Harding (1986) have removed this restriction for 
the final electron. In both these articles, the momentum of the initial electron 
along the magnetic field has been set equal to zero. Note that in the latter work 
the expressions for the cross sections have been obtained for an arbitrary 
longitudinal momentum but in those expressions there are inaccuracies which 
may produce errors. 
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108 D. I .  NAGIRNER AND E. V. KIKETZ 

The most complete results for the Compton scattering in a strong magnetic field 
have been given by Bussard et al. (1986) where the polarization of radiation is 
taken into account. No constraints on the values of the parameters of interacting 
particles have been imposed. Simultaneously, the divergencies in cross sections 
have been regularized and the total cross sections have been averaged over some 
distributions of scattering electrons by Bussard et al. (1986). 

It is worthwhile to note that the results of Daugherty et al. (1986) have been 
used by Harding et al. (1986) to interpret the observations of spectral gamma-ray 
bursts. The Compton scattering of synchrotron radiation has been considered by 
Alexander et al. (1989, 1991) as a mechanism of formation of resonance features 
in gamma-burst spectra. The Comptonization of soft photons by relativistic 
electrons results in the continuous spectrum of gamma-ray bursts as well 
(Dermer, 1990), Vitello et al., 1991). 

We have written a computer code for calculating complete 4 x 4 matrices of 
scattering cross sections for arbitrary polarization states of interacting electrons 
and photons. As in Bussard et al. (1986), the energies and moments of electrons 
and photons are considered to be arbitrary. 

We have reduced the quantum electrodynamics formulae to the form con- 
venient for calculations. The regularization of singularities (resonances) have 
been also made. Using the calculated values of the matrices, the cross sections for 
unpolarized electrons and the total cross sections are evaluated. 

The formulae for elements of the matrices mentioned above and the scheme of 
the calculation will be given elsewhere. In the present note we concentrate our 
attention on the following problem: how to obtain the positions of the resonances 
as functions of the parameters of interacting photons and electrons. Note that 
these resonances are identified with the linelike features observed in gamma-ray 
bursts. We propose also the way to regularize the resonances. 

To simplify our formulae we will use the relativistic quantum system of units 
where the Plank constant, the speed of light and the mass of electron are the 
basic units: h = c = m = 1. In this system, the length is measured in the units of 
the Compton wavelength hlmc, the energy, in mc2, the frequency, in mc2/h  and 
the momentum, in mc. The electron charge is then equal e =e/(hc)”2= 
1 / ( 137.036) 

2. THE ELECTRON AND THE PHOTON IN MAGNETIC FIELD 

Let the magnetic _field be constant, uniform and its direction to be coincident with 
the z-axis, i.e. B = B(0, 0, l), where B > O  is arbitrary. The product of the 
electron charge and the field strength B will be denoted as b. In usual CGS units, 
b = BIB, = eBh/m2 c3. 

The states of an electron in the magnetic field are described by the solutions of 
the Dirac equation. These solutions are the functions of time and space 
coordinates. They depend also on the number of the Landau level, n =  
0, 1, 2, . . . , and on the longitudinal momentum of the electron Z. The transverse 
components of the electron momentum enter intermediate formulae only: all 
physically meaningful values do not depend on them. For example, for the 
electron energy we have 
E = R,,(Z) = (1 + Z2 + 2bn)”* > 0. (1) 
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COMPTON SCATTERING IN A MAGNETIC FIELD 109 

We need some more variables connected with the electron energy: 

b, = (2bn)"2, s ; =  1 + b; = 1 + 2bn, 

k' = k(sin 8 cos cp, sin 8 sin cp, cos 8 )  

Rz =s; + Z2. (2) 

(3 )  
Let 

be the usual three-dimensional momentum of photon. 
All values in the initial state (before scattering) will be labelled with the 

subscript i and in the final state (after scattering), with the subscript f, for 
example, nj  and nf are the corresponding numbers of the Landau levels, k j  and kf 
are the frequencies of photons. Some notations will be abbreviated, for example, 
we shall write Ri and Rf for the energies of the electron in initial and final states. 
We shall write also the subscripts i and f instead of ni, and nf in si and sf. 

Now we formulate the conservations laws. 

3. CONSERVATION LAWS 

We need the following notations: 

RZ = R, - Z, cos 6,) Z R  = R,  cos 8, - Z,, 
Rk = R,  + k,, z k  = 2, + k, cos 8,, 

(4) 
(5 )  

(7) 

k, = k, sin2 8, + RZ, kR = k,(k, + RZ), kb = kR + 2b(n, - nf), (6) 
A2 = (Rk COS Of - Z k ) 2  + S; Sin2 of, A > 0. 

For the Compton scattering of photon by electron, two conservation laws are 
essential, namely those of energy and longitudinal momentum: 

R, + k, Rf + kf, Z, + k, cos 6, = Zf + kf cos Of. (8) 
As we have already mentioned, the transverse components have no importance. 

In order to compute the differential cross section and the elements of the 
polarization matrices, it is necessary to know Z,, n,, k,, 8,, nf, Of., cpf - cp, and the 
polarization states of electrons and photons. Then we find succesively R,  from ( l ) ,  
2, from the second equation in (8) and Rf from (1). The momentum (or the 
frequency, which is the same in our system of units) of the scattered photon kf 
may be obtained using both Eqs (8). If we substitute 2, from the second Eq. (8) 
into the first one we obtain the equation 

sin2 8fk; - 2kf(Rk - Z k  COS 8,) + kh = 0. (9) 
Then kf may be expressed as 

The momentum kf must be positive. Consequently, we have the constraint on the 
number of the final Landau level: 

nf s na = nj + Entier(kR/2b), (11) 

where Entier(x) is the integer part of x. 
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110 D. I. NAGIRNER AND E. V. KIKETZ 

4 .  THE RESONANCES IN THE CROSS SECTIONS 

Two Feinman diagrams correspond to the Compton scattering. Both initial and 
final states contain one electron and one photon. According to the diagram 
denoted as a, the electron first interacts with the initial photon being converted 
into a virtual electron (or positron). The latter then emits the final photon. In the 
diagram b the interaction points are transposed: at the beginning of the process 
the electron emits the final photon and then the virtual particle absorbs the initial 
photon. 

Denote the number of the Landau level of the virtual electron by n and its 
longitudinal momentum, by Z. Then its energy is determined by Eq. ( 1 ) .  The 
difference between the virtual electron and positron is that the energy of the 
latter is equal to -R,(Z) < 0, where R, > 0 is the energy of the former with the 
same IZI and n (the signs of their Z may be, but not necessarily, opposite). 

The derivation of the expressions for the amplitudes of the Compton scattering 
involves several integrations which lead to rather complicated formulae. These 
formulae include the summation over all Landau levels of the virtual particles. 
Each term of the sums contains one of the four denominators: (R, + ki - R,) and 
(R, +ki + R,) for the diagram a, (R, - kf -R,) and (R, - kf + R,) for the 
diagram b. The braces with the + at R, correspond to virtual positrons and are 
always positive whereas the others, electron ones may be equal to zero, so that 
the cross sections become infinite. These cases are called resonances. 

The fact that the above braces are equal to zero means that the energy is 
conserved during the interaction. The longitudinal momentum is also conserved. 
So, for the diagram a we have 

For the resonance of diagram b,  the following equations hold: 
R, = R, - k f ,  Z = Zi  .f kf cos Of, R, = Rf - ki, Z = Zf - ki cos Bi.  (13)  

Of course, if we eliminate from (12)  and (13)  all the quantities corresponding to 
the virtual particles, we shall obtain the conservation laws (8). 

As in the case of the scattering in a spectral line, the resonances are to be 
regularized. In this work we study the distributions of resonances over the 
Landau levels, the energy of the incident photon and the direction of the 
scattered photon. 

It is rather easy to find the resonances of diagram a. When the particle 
parameters before scattering are given, such a resonance can occur only at a 
single Landau level. Indeed, the first two equations in (12) imply 

So, the resonance is possible if the expression for n in (14)  is a non-negative 
integer. We see that the resonance n is determined only by the parameters of the 
initial electron and photon and coincides with the upper limit of nf,  which is equal 
to ny. 

We can easily find the frequency of the initial photon at which the resonances 
exist. Substituting the expression for k R  from (6) into (14), we obtain that the 
resonance occurs for any integer n 2 0 at 

R, = Ri + k, = Rk, Z = Zi + ki cos 8, = Z k ,  R, = Rf+ k f ,  Z = Zf + kf cos 8p (12) 

n = ni + k R / 2 b  2 ny. ( 14) 

[R; + sin’ 8,(sf - sf)]”* - RZ - k .  = - 2b(n - ni)  
[R;  + 2b sin2 8,(n - ni)]”’ + RZ . (15) sin’ 8, 
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COMPTON SCATTERING IN A MAGNETIC FIELD 111 

It is much more difficult to study the resonances of the diagram b .  First we shall 
investigate the n values of the resonance Landau level and then the directions of 
scattered photon which produce the resonances at certain n from this range. 

5.  THE RESONANCE LEVELS 

The resonance condition (13) includes, together with the initial parameters of 
electron and photon, the frequency k, and the angle 6, of the scattered photon. 
Formally, this condition leads to the same expression for the number of the 
resonance level as (14) with the replacements Oi+= 0, and k j +  -kp 

n = ni + [k; sin2 0, - 2kf(R,  - Z j ) ] / 2 b  (16) 

We should remember that now the frequency kfis not arbitrary but has to be found 
from (10). 

With the aid of (9), Eq. (16) can be rewritten as linear in k,: 

n = n; + [2kikf(l - cos ei cos 0,) - k , ] / 2 b  3% n(cos 6,). (17) 

Keeping in mind Eq. (lo),  we see that in (17) n is a function of cos 0,. We denote 
this function as n(cos 6,). Consider this function in more detail. 

We are interested in non-negative integer numbers between the largest and the 
smallest values of n(cos Of), which form the range of resonance levels. The 
smallest value is either equal to 0 or reached at the limiting values of cos 0, = f l .  
The largest value also can be one of them. Therefore, we first study n ( + l )  and 
n(-1). 

Using notations (6) ,  we have 

ki(1 T Cos e;)ni + (Ri T z i ) ( n f  - k , / 2 b )  
n(*l) = (18) Rk Z k  

The difference between these two values is proportional to Z ,  from (4): 

n(1)  - n(-1)  = - 2 k ; k h Z ~ / ( k ,  + S;), (19) 

that is n(1) > n(-1) when Z R  < 0 and vice versa. 
For the determination of the largest value of the function n(cos Of), we should 

take into account the possibility that this function has a maximum inside the 
interval (- 1 , l ) .  

It is easy to show that this maximum coincides in the position with the 
minimum of the function 

R; - Z; cos 6, + A 
q c o s  e,) = 

1 - cos ei cos e, 
Indeed, 

To find the extremum point let us take the derivative 

(21) 

of (20) with respect to 
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112 D. I .  NAGIRNER AND E. V. KIKETZ 

cos 0,. Note that Eq. (7) implies 

where s; = 1 + 2bn,. Then 

~ C O S  ef)(i - cos e, cos e, 

After the substitution of (22) into (23), we obtain the condition of the extremum: 

ZRA + (& cos e, - zk)k, + S;(COS 8, - cos 6,) = 0. 

(Rk cos e, -- zk)2 sin2 8, = S;(COS ej - cos e,)’. 

(24) 
If we eliminate A from (24) taking square of it, we obtain the following equation 
for cos 0, at the extremum: 

(25) 
Consequently, the extremum is possible if 

Z, sin 0, f sf cos 8, 
Rk sin 0; f sf 

cos e, = 

When we obtain (25) from (24), additional solutions may arise. So we substitute 
(26) into the initial Eq. (24) and take into account that 

IkZ f sf sin Oil 
IRk sin 8; f s f J ‘  

A = sf (27) 

Then we find out that (26) is a solution of (24) if we choose the lower signs in 
both the numerator and the denominator and the following inequality holds: 

kZ - s, sin 8, 
A = Sf > 0. 

Rk sin 8; - Sf 

This inequality with the obvious requirement -1 5 cos 0, 5 1 leads to the 
conclusion that the maximum value of n(cos 0,) exists inside the interval (-1, 1) 
if 

This maximum is reached at the point 

Z k  sin 8, - sf cos 8, 
Rk sin 6; - sf 

cos el! = 

and its magnitude is 

nmax = n(cos 8;) = [ (k ,  sin 8, - s,)’ - 1]/2b. (31) 
We can check that ~ ” ( C O S  87) > 0 and, consequently, h(cos 8;) is the minimum 
value whereas n(cos 6;) is the maximum one. 
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COMPTON SCATTERING IN A MAGNETIC FIELD 113 

So we need to compare the three (or two, if (29) is not fulfilled) quantities, 
n(k1)  and n,,,, and to choose the smallest and the largest of them. When a 
non-negative integer number occurs between the smallest and the largest values, 
the resonances of diagram b exist there. If the function n(cos 8,) has a maximum 
and Z R  > 0 then there is one resonance value of cos 8, for each integer n 2 0 such 
that n ( l ) ~ n < n ( - l )  and, otherwise, two values for n ( - l ) s n  5 n m a x .  If the 
maximum does not exist then there is one value of cos 8, for each n 2 0  in the 
interval n(1) 5 n S n ( - l ) .  If Z ,  < O  then two values n(1) and n(-1) exchange 
their positions. At last, if ZR = 0 then n(-l) = n(1) and the maximum does 
always exist at cos 8, = cos 8; = Z j / R j .  

For possible resonance values of k; in the case of diagram b we can obtain only 
inequalities. These inequalities are the same which determine the region of 
resonance Landau levels. It is easy to see that the level with the number 
n = 0, 1, 2, . . . will be resonant in the case Z R  > 0 if either 

or 
Sf  37, n( - l )>n ,  n ( l )<n ,  (32) 

Sf < S T ,  n,,, 2 n, n(1) < n. (33) 
In more detail, these inequalities can be written as 

2cos2(8,/2)k, 2 s f  cot(8,/2) - R; - Z;,  

2 s; - Sf < kisin2 8; +- 
k, 

In (34) and (35), s: = 1 + 2bn as before. 
For Z,<O the inequalities can be obtained if we repalce Z,+ - Z j  and 

8;- JG - 8,. All other quantities do not change their values, among them there is 
RZ. 

If ZR = 0 the resonances exist at level n for all k, that satisfy 

The resonance values of ki can be obtained if we solve the corresponding 
inequalities. 

Thus, there exists a region of non-negative integer numbers n at which the 
resonances of diagram b occur. One or two resonance values of cos 8, occur when 
these resonances really arise. Now we find these values. 

6. THE DISTRIBUTION OF RESONANCES OVER DIRECTIONS 

If the number n of a Landau level is in the resonance region found above then 
from (16) we can obtain the following equation for cos 8,: 

A,, cos2 8, - 2B, cos 0, - C,, = 0, (37) 
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114 D. I. NAGIRNER AND E. V. KIKETZ 

where 
A ,  = k: + 4k,Z, cos e lk ,  + 4 k f  cos2 8,(s: - s:), 

B,, = 2k,[(Z,  + R,  cos 8,)k,  + 2(s: - s f ) k ,  cos el] ,  
C,, = k: - 4k,R,k,  - 4 ( ~ :  - s:)k:. 

k ,  = kR + 2b(n - n f )  = k R  + 3;  - $. 

cos 8, = ( B ,  f lknl D,,)lA, 

D: = B: + A,C,  = [s: - (k ,  sin 8, - sf)’][s: - ( k ,  sin 8, + s ~ ) ~ ] .  

(38) 
(39) 
(40)  

(41) 

(42)  

(43)  

In the last three formulae, the following notation is used 

From Eq. (37) we find 

where 

Double sign in (42) reflects the possibility of two resonant directions at one 
resonance n. The dependence of cos 8, on n is suppressed in these expressions. 

If we introduce auxiliary variables 
Y, = [s: - 3; + k:(l  + COS’ 8,) + 2k ,RI ] /2b ,  y = ( R i  - s;)’”, (44)  

(45)  
(46)  

(48)  

then (38)-(41) and (43)  will be expressed in term of (44)  as follows: 
k,, = 2k,(Y,, - Zk cos Of), A ,  = 4k:(Y: - y2 C O S ~  el) ,  
B, = 4kf [ (Zk  + Rk COS 8,)Yn - COS 8 , ( y 2  + ZkRk COS of ) ] ,  

Df = 4 k f [ Y :  - 2RkYn + R: cos2 8, + y 2  sin2 Of]. 
c,, = 4k:[Y: - 2(Rk + Zk cos 8,)Y, + y 2  + Zk(2Rk cos 8, - Zk sin2 of)], (47) 

If we substitute (42)  into expression (10) for k, we see that at the resonance, 

kn k -  
- 2ki( l  - cos Oi cos 8,) (49)  

and, consequently, k,,>O. At the same time A,, can be both positive and 
negative. If A,, = 0, only one resonant value of cos 8, is possible, namely 

cos 8, = -C,, /2Bn. (50) 
If A ,  + 0, the second solution goes to infinity (unphysical case). 

The formulae obtained show that the procedure of calculation of resonances 
must be the following. Using given values ni, Z, ,  ki ,  Oi, nf, 6, we find all the 
quantities which enter Eqs (4)-(6) .  We check if n,satisfies the inequality ( 1 1 )  and 
there is a resonance of the diagram a. Then we calculate the values n(-1) and 
n( l ) ,  find whether the maximum of n(cos 0,) exists and, if it does, obtain nmax. 
Then we search for the region of resonance levels n. At last we calculate the 
quantities (38)-(42) and use them to obtain the resonant directions (36)  taking 
care that all the cos 8, do not exceed unity by modulus. 

7. REGULARIZATION O F  THE RESONANCES 

The regularization of the resonance levels is necessary first of all in order to 
calculate the differential cross sections and polarization matrices for all admissible 
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COMPTON SCA'ITERING IN A MAGNETIC FIELD 115 

values of the parameters of colliding particles without care that some of the 
calculated values may be infinite. Of course we might avoid such situations. The 
behavior of the cross sections can be understood from their values out of 
resonance. But if we want to calculate the total cross sections or some average 
values, for example the mean frequencies of scattered photons then the presence 
of resonances does not allow these calculations. 

Bussard et al. (1986) inform that they regularize the resonances using the mean 
lifetimes of Landau levels. But there are no details in their work. The lifetimes 
were calculated by Herold et al. (1982). 

We may propose two methods of regularization. The first one is less accurate 
but it is sufficient for many purposes, for example for the calculation of total cross 
sections. According to this method, the resonance denominators Rj + k j  - R, and 
R, - k, - R, are replaced by R, + k, - Rn - iT and Rj - k, - R, - ir, where the 
width of the transition region r can be taken as in the theory of spectral lines in 
the form of a sum of the widths of the levels involved: 

r = r, + (ri + r f ) /2 .  (51) 

For the width of the level, it is sufficient to take the following empirical fitting 
formula proposed by Pavlov (1986): 

r, = bn2/i37.036(i + bn)[i + (bn3)112]1/3.  (52) 

It is possible to take into account the dependence of the level width on the 
longitudinal momentum of the electron, i.e., to set 

r , (Z)  = rn(O)Rn/sn, r,(O) = r,. (53) 

At the present time the shifts of Landau levels and the widths of shifted levels 
have been calculated. These results are given by Pavlov et af. (1991). In the same 
work, satisfactorily accurate parametrizations have been obtained for the widths 
and the shifts. The shifts are not equal for the levels with different projections of 
spin, so degenerate levels become non-degenerate. Therefore the possibility 
arises to take into account the widths of shifted levels which can be strongly 
different from each other. This is particularly important if we investigate the 
polarization of scattered photons. This is the second method of regularization. 

To calculate the total cross sections we need to integrate the differential ones 
over the directions of scattered photons. The integral over qf can be calculated 
analytically (cf. Bussard et al. (1986)). As for the integral over Of, the terms of 
the diagram a do not depend on 0,. At the same time, the terms of the diagram b 
may contain the resonances. Near the resonance, the integrand varies very 
quickly with Of even being regularized. So we have to be careful. Bussard et al. 
(1986) have increased the order of the quadrature formula. We use a method 
based on a special quadrature of order two which is adapted to the regularized 
integrand. In fact, these quadratures were deduced for each resonance separately 
by the method described by Chandrasekhar (1950). Note that we use similar 
quadratures in the case of the so-called quasi-resonances when the denominators 
do not vanish but become very small. This method gives accurate results and 
saves computer time. 
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CONCLUSION 

We have described the procedure to search for the possible resonances in the 
cross sections of Compton scattering and to regularize them. The results of the 
calculations of the cross sections and the polarization matrices and the cor- 
responding formulae will be given in the following publication. We suppose to use 
them for the investigation of various characteristics of Compton scattering, for 
averaging these values over the distributions of electrons and photons and for the 
calculation of the spectra formed by Compton scattering. 
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