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PARAMETRIC ADJUSTMENT OF ASTROMETRIC 
DATA 

V. S.  GUBANOV 

Institute of Applied Astronomy of the Russian Academy of Sciences 
8, Zhdanouskaja st., 197042, St.  -Petemburg, Russia 

(16 October 1992) 

The parametric adjustment method (PAM) applied to astrometrical problems of the least-squares 
collocation (LSC) principles is considered. In the first instance the PAM is intended for adjustment of 
absolute observations in radio/optical and satellite astrometry, when the coordinates of the observable 
selestial objects (OSO) are being determined together with other parameters of the data mathematical 
model. Special attention is paid to obtaining and using a priori information on the accuracy and 
internal correlations in both unknown parameters and observational data. It is shown that the best 
conditions of astrometrical data adjustment are obtained if the observations are carried out by group 
programs. 

KEY WORDS Astrometry, data adjustment. 

INTRODUCTION 

Lately the amount of astrometrical data, their diversity and accuracy greatly 
increased due to the application of new time-coordinate measuring facilities and 
the modernization of the classical ones. At the same time the demands on the 
quality of mathematical analysis of astrometrical data has also increased. 

The principal aims of improvement of astrometrical data analysis consist in 
increasing the validity of the results and their accuracy estimates. The following 
are proposed as solutions of this problem: 

a) elaboration of a more precise and complete mathematical model of 
observations by increasing the reduction accuracy and a more careful study of the 
physical conditions of the observation process; 

b) a more complete use of available a priori information; 
c) optimization of observational programs. 
The LSC method developed by Moritz (1980) may be used as a theoretical 

basis for the development of a new technique of astrometric data adjustment. As 
applied to physical geodesy, the LSC allows to optimize the algorithm of a joint 
analysis of various ground and space based measurements, where gravity exists. 
This method also allows to determine the best estimation of the geopotential 
parameters if its a priori covariance function is known. This is also possible in 
astrometry, for example, in the determination of the Earth rotation parameters or 
in the compilation of fundamental catalogues. 

In this paper the ideas of the LSC are used for the solution of the simpler 
problem that consists in the optimal estimation of astrometric parameters in the 
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118 V. S. GUBANOV 

process of global adjustmenl of observations. It was thus necessary to introduce 
only some generalization of the simple least-squares (SLS) method. This fact 
allows the use of the data covariances and a priori information about the accuracy 
of the estimated parameters in the adjustment process. Furthermore, complicated 
problems concerning the use of this method for filtration, interpolation, ap- 
proximation, forecasting and joining up of time series and random fields on the 
celestial sphere will be considered. 

1. MATHEMATICAL MODELS OF ASTROMETRIC DATA 

1.1. Observational Data 
Consider small differences (0 - C), 

between the two values, one of which (Lo)  is obtained from immediate positional 
observation of celestial objects and the other (L,) calculated on the theoretical 
basis. The coefficients h, are usually used for the purpose of scaling these 
differences. The values LO and L, must be compared with each other in the same 
time-coordinate reference frame S = (C, t) .  It is convenient to use the instrument 
registration system S, for this purpose. In this system the immediate measured 
value Lo is the true value L (Lo = L + t) to within the observation errors t. The 
calculated value L, is equal to the same true value L =  L, + p to within the 
reduction corrections p due to inaccuracies in the initial data and underlying 
theories. The main uncertainties of the reduction theory are as follows: 

1, = h,(Lo - L,),,  (i = 1, 2, . . . , N ) ,  (1) 

+oordinates or orientation of the astrometric instrument; 
-physical theory of the instrument and observation process; 
+oordinates of the observed celestial objects (OSO), 
-unsteady atmospheric effects; 
-irregularity in the Earth’s rotation; 
-tidal and tectonic deformation of the Earth. 

By substituting the values Lo = L + t and L, = L - p in (1) we obtain the data 
vector 

1 = ( I , )  = h,( t  + p),. (2) 
Let us separate the systematic component c = (c , )  from the data vector I = (I,). 

Introducing a linear parametric model 

we can represent the data vector in the form 
1 = Gz + w, 

where z =  (Ap,) is the vector of unknown parameters of the linear model ( 3 )  
( j  = 1, 2, . . . , m),  G is the matrix of derivatives of dimension N x m and 
w = (w;) is a quasi-random residual vector 

(4) 

w = u + v + t .  ( 5 )  
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ADJUSTMENT OF ASTROMETRIC DATA 119 

Here u is the vector of random components of observational errors and the errors 
of modeling their systematic components, v is the vector of unknown individual 
components of the OSO coordinate corrections and the errors of modelling their 
systematic components, t is the vector of errors of that part of the data model 
which is not included in the model (3) and whose parameters are not included 
into the vector z and not specified. 

1.2. A Priori Accuracy Estimation of Observational Data 

Quasi-random vectors u and v are distributed in different fields and thus are not 
correlated. In addition, the covariances Q,, and Q,,, are negligible as t is usually 
small. Therefore, the variance-covariance matrix of the residuals w, according to 
(5 ) ,  is 

Q, = Q, + Q,, + Q,. (6) 
At the initial stage of the treatment of the data only preliminary estimates of 

the observational variances a; are usually known, and so, we have according to 

Q,, = diag(h;ay). 

In the general case, v is a linear combination of individual corrections to the OSO 
coordinates 

( 2 )  

where 
v = Ev, + F v ~ ,  

(v,, vg) = (A& cos 6, A s ) ,  

E = diag(e,) and F = diag(jJ are diagonal matrices of known coefficients. Then 

Q, = EQ,,ET + FQhbFT + 2(EQ,,FT). (9) 

In particular, we have e, = f l ,  8 G O  or e, '0, & = f l  for meridional and 
e, #f; # 0 for non-meridional instruments. 

Some of the modelling parameters are usually adopted as precise. They are not 
improved and do not enter the model ( 3 ) .  However, the accuracy of such 
parameters is often known and the estimates of their variances can be used in the 
adjustment process (Klenitzkij, 1982). If the vector of non-specified reductions is 
represented in the form (3), 

t, = / = I  ( z ) A q j .  

and the known variances of parameters qj are denoted as (a;), then 

Q, = VSVT, (10) 

where S = diag(a;), V is the matrix of derivatives of dimension N x n. As follows 
from Eqs. (6), (9) and (lo), in the general case matrix Q, is not diagonal and its 
off-diagonal elements are a consequence of a non-complete model (3) and the fact 
that the same OSO may be observed more than once. 
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120 V. S. GUBANOV 

1.3. A Priori Accuracy Estimation of Unknown Parameters 
In practice some a priori information about the accuracy of unknown parameters 
p, ,  that we are going to improve with the help of new observational data, is often 
known. It is more convenient to obtain this information from the adjustment of 
previous observations, when it can be expressed in the most convenient and 
complete form as the variance-covariance matrix of all or some parameters p,  
( j  = 1, 2, . . . , m ) .  However, the usual form of such information, especially at the 
first steps of data processing, are the probability estimations: 

P(a, =:p, < b,) = F(a,) - F(b,) = PO, (11) 
where P is the probability that the true values of parameters p,  are in the intervals 
[a,, b,); F(a,) and F(b,) are the values of the normal distribution function at the 
ends of this intervals. Taking the probability &=0.997 and assuming that the 
intervals [a,, b,) are symmetric (a, = p ,  - Ap,, b, = p ,  + Ap,),  we can express, 
according to the well-known rule of “three sigma,” the half of the interval lengths 
[a,, b,) in terms of the root-mean-square (RMS) errors a,, i.e., Ap, = z, = 30,. 
This permits to obtain the diagonal elements of the matrix Q, = diag(a7). 

Sometimes the accuracy estimations are available for function c,, but not for 
the parameters 2,. Gubanov (1988,1991) showed that in this case the RMS a 
priori estimations of the improved parameters p,  can be obtained if the linear 
model c = Gz can be represented as an expansion in ortho-normalized basic 
functions, as in this case an obvious equality is fulfilled: 

u$ = a$ llG112/N = const, 
where a, is a known RMS of c,, llGll is the spherical norm of matrix G ,  and N is 
the observation number. Thus, in this case not all the elements of the diagonal 
matrix Q, = diag(o:), but only the mean variances o:, can be reconstructed. This 
is why Q, = G?I, where I is a m X m unit matrix. 

1.4. The Completeness and Orthogonality of the Data Models 
Consider a simple two-parametric model of data 

1, = =, + by,, 
where I, = (l;) , ,  a = (a;) ,  b = ( b j )  are column-vectors (i  = 1, 2, . . . , N ) ;  x,, Y , ~  are 
the scalar parameters determined, and s is the number of the observation series 
(s = 1, 2, . . . , n ) .  

Let us assume that the true vectors I, contain random errors w, and hidden 
systematic errors c, = gz, characterized by a stable influence vector-function g and 
variable, from series to series, parameter z,. Thus, by analogy with (4) we have 
the following parametric equation in the vector form 

1, =cF + w, =gz,  + W ,  =ax$ +by, .  
The SLS estimates of unknown parameters are given by 
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ADJUSTMENT OF ASTROMETRIC DATA 121 

Here D = 1 - (ab)' is the determinant of the normal equation matrix. Parenthesis 
denote normalized scalar products of the corresponding vectors, and we have 
(aa) = (bb) = (gg) = 1. 

The first and second terms in (13) are the effects of systematic and random 
errors in the observational data, respectively. Both effects are enhanced if the 
determinant D decreases. 

If the parameters 2, of the hidden systematic errors e, are random and their 
mean value equals zero, i.e. M[z,] = 0, then the SLS estimations of the unknown 
parameters will be also random with the mutual regression 

(Y,), = kc(&).$ + [W2 - (ag)'Iz,/(bg)D, 
where k,  = (ag)/(bg) is the coefficient of regression. However, in practice the 
most typical and dangerous situation is the stable effect of systematic errors, when 
M[z,] = z # 0. In this case the errors of the determined parameters also become 
stable and the regression given above turns into a functional connection. 

As to the random errors w,, it is obvious from (13) that their influence on the 
estimates of the determined parameters is minimal if (ab) = 0 and increase rapidly 
if (ab)+ f 1. Besides, there is the following statistical connection between these 
estimates: 

(Y,), = k, ( -L) ,  + [(bwd2 - (aws)21/(bw.$)Dj 
where k ,  = (aw,)/(bw,) is a random coefficient that differs from k,. 

It is easy to show that, if the hidden error c, is included in the data model, the 
mean values of all the SLS parameter estimates will be statistically true values. 
The random distribution of these estimates from series to series will be minimum 
if the basic functions of the data model are mutually orthogonal. 

2. GENERAL LEAST-SQUARES TECHNIQUE 

2.1. The Parametric Adjustment Algorithm 

We see from the above discussion that it is necessary to include in the generalized 
concept of astrometric data not only the data vector I ,  but also the a priori 
information on the variance-covariance matrices Q, and Q, of both the 
quasi-random residuals w and parameters z, respectively. In this case the solution 
of the system (4) must be found under the condition (Moritz, 1980) 

where 
S = W ~ P , W  + zTPzz = min., 

P, = aiQL', P, = 4Q;' 
are the given weight matrices. Taking into account the extremum condition (14) 
and the formula (4), we obtain the system of normal equations as 

Dz = f ,  (16) 

(17) 

whose solution is 

where 
z = D-'f = Cf, 

D = GTP,G + P,, C = D-', f = GTP,I. 
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122 V. S. GUBANOV 

The parameter accuracy estimation is given by the a posteriori variance- 
covariance matrix 

Q, = a& 
where a; is the variance of unit weight (Klenitzkij, 1982) 

Here 
a; = S / ( N  - m + m,). 

s = ITP,I - fTZ, 
and m is the total number of  unknown parameters of vector z, and m, is the 
number of regularized parameters (m, d m). 

If some parameter zl is not regularized, the j’th line and column of matrix P, 
vanish simultaneously. If P, = [O], we have m, = 0. In this case the general 
least-squares (GLS) algorithm (14)-( 18) turns into the SLS technique, which 
additionally assumes that the weight matrix P, is of a diagonal type. Thus, the 
SLS supposes that the improved parameters p ,  have infinite variances a; and zero 
weight. Therefore, the SLS estimates of the corrections z, = Apl can be arbitrary 
whereas due to presence of a “stabilizer” Q = zTPzz in (14), the GLS estimates z, 
are limited. The more precise are the initial values p ,  and the poorer is the 
accuracy of observations, the nearer to zero are the corrections zl = Apl obtained 
by the GLS solution (17). 

Otherwise, thanks to the “stabilizer” Q, the GLS algorithm does not have 
chance to worsen a precise knowledge of initial parameters due to rough 
observations, and vice versa, the GLS estimates of the parameters having large a 
priori errors obtained by using precise observations are close to the SLS solution. 

Comparing the above regularization procedure with that proposed by Tikhonov 
and Arsenin (1986), we see that the latter allows the use the regularization matrix 
P, in the simplest form as P, = aI, where a is the so-called regularization 
parameter. Therefore, the regularization parameters a are equal to the mean a 
priori weight p ,  of the estimated parameters with respect to the variance of 
observations a;, i.e. a = a ~ / a ~  = p ,  = const. A similar case is considered in Sect. 
1.3, but usually we have the possibility to estimate all the diagonal elements of 
matrix P, and even the whole matrix. Thus, the regularization of the system of 
normal equations proposed by Tikhonov and Arsenin (1986) is a partial use of a 
priori information on the accuracy of the estimated parameters. 

2.2. Orthogonalization of Estimated Parameters 
If the correlations between parameters z, are close, it is possible to enter a new 
system of non-correlated parameters 2; by means of the linear transform (Jenkins 
and Watts, 1969) 

where R = (Ti,) is the orthogonal matrix of eigenvectors r, of matrix C. The 
right-hand side eigenvectors r, are the columns of the matrix R. The linear 
transformation 

z = RTz’, (19) 

R ~ C R  = L (20) 
converts matrix C into a diagonal one L = diag(A,), which consists of eigenvalues 
Al ( j  = 1, 2, . . . , m ) .  
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ADJUSTMENT OF ASTROMETRIC DATA 123 

Substituting (19) into the system of normal equations (16) and multiplying the 
result by R, we obtain a new normal system 

RDRTz’ = Rf 

and its solution is 

= ( R D R ~ ) - ’ R ~ .  

Using Eq. (20) and the orthogonality of matrix R (RT = R-’), it is easy to show 
that the covariance matrix C’ of new parameters z’ is a diagonal one: 

c’ = (RDRT)-~ = (RT)-’D-~R-’ = RCRT = L. 

This is why the solution (21) can be written in a simpler form 
2’ = LRf. 

Multiplying (19) by R, we obtain the inverse transformation 

or 
z’ = Rz, 

2 ;  = rllzl + t-1222 + . - - + TlmZ,, 

z ;  = rzlzl  + r2222 + * . . + r2,,zm, 

z ;  = rmlzl  + rm2z2 + * * . + rmmzm. 

......................... 

The system (22) can be used for replacing strongly correlated parameters by their 
linear combinations. The calculation of the eigenvalues and vectors of matrix C is 
carried out by the Jacobi method (Press et al . ,  1992) 

2.3. Parametric Adjustment Under a Constraint 

Sometimes in astrometrical practice it is necessary to take into account some 
connections between unknown parameters. Let these restrictions be given in the 
form of a linear system of equations, 

Ez = h, (23) 
where z = (x, y) is the rn X 1 vector of unknown parameters, E is the M x m 
matrix of the linear constraints and h is the vector of M independent terms of the 
linear constraints. 

A joint solution of the systems (4) and (23) can be obtained by the Lagrange 
method under a standard condition (Moritz (1980)) 

S = wTPww + zTPwz + 2kT(Ez - h) = min., 

where k is the vector of M Lagrange’s multipliers. This condition brings the 
normal equations to  the form 

D ET 
IE 0 I a lrl= 1:17 

where matrix D and vector f are given by (16), and [ O ]  is a zero-matrix of 
dimension M X M .  
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I24 V. S. GUBANOV 

The FORTRAN-subroutine for parametric adjustment of separate series by the 
algorithms described in Sects. 2.1 and 2.3 is given in the APPENDIX. 

2.4. Two-Group Parametric Adjustment 

Let us divide the systematic component c of the data vector 1 and also of its 
model (4) into two parts, c = a + b. Denoting G = [A : B] and z = (x, y), we can 
write 

I = Ax + By + w (24) 
instead of (5). In (24), we have x =  (x,) ( j  = 1, 2 , .  . . , m,) and y =  ( y k )  
(k = 1, 2, . . . , my) .  

This type of parametric equations is most convenient for the adjustment of the 
so-called “absolute” observations, when the main aim is the determination of the 
OSO coordinates. Their systematic corrections will be included into a separate 
model b = By and all the other errors, into the model a = Ax of the generalized 
instrumental system (GIs). 

Let us consider some series of astrometrical observations. The corresponding 
system of parametric equations (24) can be solved by the GLS technique under 
the condition 

S = wTpWw + xTp,x + yTpYy = min. 
which gives a two-group system of normal equations 

where 

D, = ATP,A + P,, D,  = ATP,B 

The symmetric matrix D on the left-hand 
therefore we have (Korn and Korn, 1968) 

where 
c x x  = (Dxx -DxyD;;DYx1? 
Cyy = (Dyy - D~~,DG’DXy)-’ ,  

i.e., only the m, x m, and my X my matrices 
normal system (25) is given by 

= DG, 
side of (25) has a block structure, 

D, = BTP,B + P,. 

c,, = -D,’D,,C,, 
c,, = - D ~ ; ’ D , ~ C ~ ~ ,  

need to be inverted. Solution of the 

x c x x  c x y  f, 

l y l  = icy, cyyi * i f y l ,  
The variances and covariances of the unknown parameters are given by 

where ug is the external variance of unit weight calculated using (18) with 
S = ITP,I - fTx - fy’y, m = mx + my, m, = (mr), + (m,)y .  In the case of absolute 
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ADJUSTMENT OF ASTROMETRIC DATA 125 

determinations of the OSO coordinates, it is very important that vectors x and y 
should be uncorrelated, otherwise the instrumental system would distort the new 
catalogue system. The correlation between these vectors is described by the 
matrix Kxy = (kij)xy whose elements are 

( k i j ) x y  = (c i j>xy/ - ,  

where cjj are the elements of the block matrix C. 
The cross-correlation matrix Kxy can be considered as a numerical criterion for 

a new catalogue system being independent of the GIS. The closer its elements are 
to zero, the more mutually independent are the GIS and the new catalogue 
system. This means that the new catalogue will be more accurate in a systematic 
respect. If large correlations are present in the matrix K,,, it is necessary to revise 
the GIS model a = A x .  If this is not possible, there are essential limitations to 
improving the initial catalogue using available observations. 

2.5. Adjustment of Independent Series 

In this section we consider the observations of several series. Let all the 
parameters of each series depend on its number s. Then the two-group model of 
these data can be represented as systems of n equations 

1, = A,x, + B,y, + w.?, (s = 1, 2, . . . , n ) .  (28) 
Each of these systems is independent and can be solved separately according to 

the formulas (25)-(27) only if the weight matrix of the data set has a 
block-diagonal type 

P, = diag(P,J,, (29) 
where (P,), are the N, X N, weight matrices of separate series. 

Condition (29) means that there is no mutual covariations between the series of 
data, but strictly speaking, it is very seldom fulfilled. In the general case we have 
a complete n x n block-diagonal variance-covariance matrix of the data set 

whose elements can be represented according to (7) as 

(Qsrlw = (Qsr)u + (Qsrlu + (Qsr)t, (31) 

where s, r = 1, 2, . . . , n. 
If all the GIS models a, = A,x, were sufficiently complete, the quasi-random 

errors of observation us in different series would be independent of each other, 
and we should have (a,,), = [0] with s # r and 

(QssL = diag(&. (32) 

(33) 

According to (9) the mutual covariations of the OSO individual errors are 

(Qsr)u = Es(Qsr)mmE,T + 2Fs(Qsr)m,ET+ F s ( Q s r ) a a F T #  [OI- 
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Otherwise, the mutual covariations (Q,7r)v of the OSO coordinate errors will be 
equal to zero for any pair of the series only if these series do not have common 
objects. In the general case, according to (31) and (33), the weight matrix of the 
data set is a N x N matrix, 

P, = u~Q,' .  (34) 
It requires the inversion of the complete N x N covariance matrix of the order 
N = Nl + N2 + .  - + N,, and all the series must be adjusted together by the 
algorithm described in Sect. 2.2-2.3. For this purpose it is necessary to join 
equations (28) into the system 

I = Ax + By+ w, (35) 
where I = (Is), x = (x,), y = (yS), w = (ws) are the combined vectors; and A, B are 
block-diagonal matrices, whose elements are N,  x m, and N, x my matrices, 
respectively. 

3. JOINT ADJUSTMENT OF AN ASTROMETRIC DATA SET 

3.1. The General Concept of a Joint Data Set 

Several series of observations in which data models have some common 
parameters will be called joint data set. Combining these common parameters 
into vector y, we obtain the following model of the joint data 

I, = A,x, + B,y + w,, (s = 1,2, . . . , n). (36) 
In optical astrometry, the components of the vector y are the unknown 

coefficients of a linear decomposition in ortho-normalized two-dimensional 
functions of the systematic errors of the improved reference catalogue in an 
available declination zone. 

In radio astrometry, the separation of the errors of the reference catalogue into 
systematic and random components is not used as there are not many enough 
observable radio sources. Neglecting small reduction errors t in Eq. ( 5 ) ,  we 
obtain a VLBI data model 

I, = A,x, + B,y + u,, (s = 1, 2, . . . , n) ,  

Y = (vm, V b ) .  

(37) 
where, according to (7), we have 

B, = [E, ; Fsl, 
In satellite astrometry, the joint data set is formed from observations of the 

same satellite at several ground stations (s = 1, 2, . . . , n )  during a limited period 
of time A T  = 5 days. In this case the elements of the satellite orbital arc forming 
vector y are constants or simple functions of time. Neglecting small vectors t and 
v, we obtain the satellite observation model in the form (37). 

3.2. Adjustment of Non-Correlated Series 

Consider now a joint data of series whose weight matrix has a block-diagonal 
form (29). These series are independent in the sense that their mutual 
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correlations are absent. Is such a case possible in the practice of astrometry? As 
mentioned in Sect. 2.5, the following conditions are necessary: 

(1) the reduction errors t are negligible; 
(2) the models of systematic errors a and b are sufficiently complete; 
(3) the random errors v of the OSO coordinates are zero or the adjusted series 

From the practical point of view, conditions (1) and (2) are acceptable at least 
at the first step of the iteration process. The third condition is realized in the case 
of satellite and the VLBI observations (see 3.1). 

Let us consider the adjustment process for the joint series data described in the 
parametric model (37) with a block-diagonal weight matrix 

do not contain common OSO. 

P, = aiQ;' = cri diag(Q,);' = diag(P,v),. (38) 
To first approximation, preliminary estimates (32) can be used instead of (38). 

Using the weight matrices (38) or (32), we can construct a system of normal 
equations of the type (25) for all the data series of a given group described by 
parametric equations (37). Then we have 

where 

F, = (D,,),, H, = (Dxy) , ,  6, = (DYY),, fs = (fx),, gs = (f,),. 
Eliminating xs from (39), we obtain a system of equations for estimating y from 

all the data series 

where 

As V, can be a degenerate matrix we cannot solve the system (40). We shall 
accumulate such systems for all the series of this group by simple summation 

VSY, = hs, (40) 
T - 1  T - - I  V, = (G, - Hs F, H,), hs = &. - H, F, C. 

n 

(V, h) = c (VS, hs). 
s=l 

After that we obtain the final estimation of vector y: 

y = V-'h (41) 
with the weight Py = V. It is obvious that matrix V is much better conditioned 
than individual matrices V,. 

It is easy to show that, if the weight matrix P, is of a block-diagonal type (38), 
the estimate (41) coincides exactly with that obtained from the global adjustment 
of all the series by the GLS solution of the system (35). We can obtain the same 
estimation by weighting independent solutions y, of systems (37) as 
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Substituting the estimate (41) into all the equations (37) and solving the 
separate systems 

by the GLS technique, we obtain the GIS parameters x, for all the series related 
to a common vector y 

1; = 1, - B,y = A,x, + us, (s = 1, 2, . . . , n) ,  

X, = F,-'(f, - H,y) (42) 
with the weight matrix (P,), = F,. It is easy to show that, in this case, a variance 
of unit weight should be calculated as 

a: = S / ( N  - m,n - my) ,  
where 

S = u,'P,u, = (lTPJ3 - fTFF1fs) - h'y. 
n I1 

3 = I  s= I 

The residuals 

u, = I, - A,x, - B,y, (s = 1, 2, . . . , n) ,  (43) 
can be used for further improvement of the weight matrices (P,), (see Sect. 3.5). 
Then one should repeat the whole adjustment procedure from the very 
beginning. 

The main aim of the satellite data adjustment is to determine most precisely the 
coordinates of the observation point. Therefore, observations on only one arc not 
sufficient and it is necessary to use some groups of series (k = 1, 2, . . . , m), 
corresponding to several arcs of a satellite orbit. The residuals u,, defined by Eq. 
(43), are the original data of subsequent adjustment. If we separate these 
residuals according to the series index s and choose only those which correspond 
to the observations at basic stations, we obtain a group data set whose model can 
be presented as 

Ik = A ~ x  + Bkyk + ~ k ,  ( k  = 1, 2, . . . , m), (44) 
where Ik = (u,)~; Ak = diag(&),, Bk = diag(B,)k are compound influence mat- 
rices, x = (x,) is the vector of corrections to the coordinates of the basic stations 
obtained by Eq. (42) and Y k  is the vector of corrections to the elements of new 
orbital arcs (k = 1, 2, . . . , m). 

In radioastrometry , the inter-group adjustment can be applied to diurnal series 
of VLBI observations of a given radio source at different bases, labelled with 
index k. In this case the GIS parameter vector xk depends on the base index but 
the vector y does not, therefore we have 

Ik = AXk + Bky + Uk. (45) 
As long as the group data models (44) and (45) completely coincide with the 

series data model (37), the joint adjustment of groups can be carried out in the 
same as the above series have been adjusted into groups. 

3.3. Adjustment of Synchronous Group Observations 

The above adjustment process is not used for the treatment of absolute 
observations in optical astrometry as the coordinates of stars, even of the best 
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1 3 5 7 9 11 

fundamental catalogues, have significant individual errors. A data model for such 
observations cannot be described by Eqs (37) and (38). This model has the 
general form (36) with the weight matrix (34). In the case of joint adjustment of 
such data, it is necessary to use the general algorithm (see Sect. 2.2-2.3) that 
requires operations with very large matrices. This can be avoided only in the case 
of observations carried out by group programs. 

The group program in optical astrometry is a list of transits of the stars across 
the instrument sighting device according to sideral time. This list is divided into 
several fragments of equal duration A T  = 2h. Let us call these the “groups” of the 
program. During one night, two or more consequent groups of stars (“link” of 
the program, Fig. 1) are observed as usual. 

Let consider some aggregate of series observation of one and the same link 
having the number k.  As the same stars are observed in each series, their data 
model will obviously have two common parameter vectors y and v, which define 
both a systematic and individual correction to the positions of the stars in the 
initial catalogue. Moreover, as each star is observed in al the series at the same 
hour angle, i.e., synchronously from series to series relative to the sideral time 
scale, the matrices A and B do not depend on the number of the series s. In these 
conditions the group data model turns into the form 

l , = A ~ ~ + B y + w , ~ ,  ( s = 1 , 2 , .  . . , n ) ,  (46) 
where w , ~  = us + v. 

As every next link is displaced by one group relative to the subsequent one, 
there is a 50% overlapping of the neighbouring links. In this common group they 
have the same stars. However, as can be seen from Fig. 1, only even or only odd 
sequences of links do not overlap. 

Though equations (46) are coupled by the complete weight matrix (34), nothing 
prevents us from forming their differences for common stars in different series. 
The vector of stellar coordinate corrections v cancels in this differences. Thus, for 
each pair of series with the numbers s and r we can obtain a system of equations 

where 

At the first step of adjustment we do not have the necessary information for the 
creation of the complete variance-covariance matrix ( Q s ) u ,  and we can only 
reconstruct their diagonal elements according to Eq. (32) by using the intrinsic 
measurement accuracy. Therefore, we can accept the following preliminary form 

A4.r = A AX,,, + A ~ s . r ,  (47) 

AI,,, = Is - I,, AX,,,= x .~ - x,, A%,, = U, - u,. 

groups of the 
1 2 3 4 5 6 7 8 9 18 1 1 / 1 2  1 

2 4 6 B 18 1 12 
even links 

I t I I I I I I I I I I - 1 I sideral 
Rh 1 z h  16h 2 a h  2 4 h  time 

Sh qh 

program 

Figure 1 A diagram of the traditional group program. 
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of this matrix: 

It is obvious that 

Taking into account (32) and (48), we have 

P s , r  = d ( Q s , r ) i A  = diag(&(d + of),) (49) 
where (a:)u, (a:), are the variances of the errors u, and u,, respectively. 

the normal equation system 

where 

Its solution is 

The GLS adjustment of the system (47) with the data weight matrix (49) gives 

D5.r Axs,r = 

Ds,r = A'P,,,A, Af,,r = ATPs,, AIT,r. 

AX,,, = X, - X, = Ds:; At',,, 

with the weight matrix being DS,,. 
Calculating all the reductions Ax,,, of the series with the numbers to the rest of 

the series of a given link and averaging them with the weight matrix D,,,, we 
obtain the reduction 

n 

Axs = X, - x = DL'C DS,, AX,$,, 
r = i  

of this series to the mean GIS of a given link determined by weighted parameters 
n 

x = D-'C D,x,. 
s=l 

The weight matrices of the vectors Ax, and x are 
n n 

D, = D,,,, D = C D,. 
r = l  s = l  

Substituting the reductions (50) in all the equations of the system (46), we 
obtain the data set reduced to the mean GIs, as follows: 

where 
I j = A x + B y + w , ,  ( s = 1 , 2 , .  . . , n ) ,  

1: = I,y - A AX.,. (52) 
Averaging the values (52) that correspond to the same star observed in 

different series, and using the preliminary weights 

( P A  = o?4QsL1 = d iag (d /d ) , ,  

1 = Ax + By + w, 

(53) 

(54) 

we obtain a shortened data set 
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Q, = (akh) ,  = 

where 

Q I I  Q u  . . .  Qim 

. . . . . . . . . . . . . . . . . . 
Qmi Qmz . . .  Qmm 

s= 1 s=l 

At this stage the first iteration of the series adjustment ends. The following step 
is a joint adjustment of all the links. Their data model according to (54) has the 
form analogous to (36): 

I,=A,Xk+Bky+Wk, ( k = 1 ,  2 , .  . . ,m), (56) 
where xk is the GIS parameter vector of the mean-link system with the number k ,  
defined by Eq. (49), y is the common parameter vector of the initial catalogue 
systematic errors and Ik and wk are the vectors of data and quasi-random 
residuals, respectively, averaged over all the series according to Eq. (55). 

The model (56) differs from (36) in that its residuals are the sums wk = uk + vk. 
The variance-covariance matrix of these residuals is 

Q, = (QM), = (a,,), + (Qkh),, ( k ,  h = 1, 2, . . . m) ,  (57) 
and the weight matrix is defined by (34). 

A preliminary estimate of the matrix Q, is a block-diagonal matrix 

Q, = diag(Qkk),, 

whose blocks follow from Eqs. (48) and (55) as simple diagonal matrices of the 
form 

(Qkk)tr = diag((d),/n). (58) 
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a 0 0 0 0 . . .  b 
0 a b 0 0 - 0 .  0 

Q,= 0 b a 0 0 . . -  0 
. .  ...................... 

! b  0 0 0 0 . . .  a ,. 

3.4. lmprovement of the Data Variance-Covariance Matrix 

As we have seen above, a first-step adjustment of all types of astrometrical 
observation allows to determine parameter vectors x and y, and also quasi- 
random residual vectors (u.$)k (s = 1, 2, . . . , n;  k = 1, 2, . . . , m). We show now 
how this can be used for the improvement of the a priori variance-covariance 
matrix of observational errors. This is important for the improvement of 
parameter estimates in the second iteration also for the agreement between the 
adopted mathematical models and the real physical process of observation. 

Consider first of all the residuals (u,)k corresponding to satellite observations. 
In this case it is natural to seek for a correlation between the residuals as a 
function of time and the station number s. The current time of observation ti will 
be calculated within the interval AT = T2 - TI corresponding to the temporal 
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length of the orbital arc (AT 2 5  days). If the step of time is At, then 
ti = T, + (i - 1) At, where i = 1, 2, . . . , N .  As several residuals (u,7)k = ( u ; , ~ ) ~  
corresponding to observations of several orbital arcs at a given station can appear 
in the interval At; = ti f At/2, we obtain n vectors iis after averaging the original 
residuals ( u j s ) k  over k as follows: 

us = (Cis) = (ul\) - Ul!, (60) 
where 

i m  i n  

(UL) = c ( U j J k ,  u ]  = 1 c (ub). 
m k = l  n s=l 

The changeable numbers m = m, may be used as the weights of the mean 
residuals (ul\). In the general case considerable variations of the weights are 
possible. The residuals (60) can be represented in the form of a two-dimensional 
matrix 

l i i N 1  CN2 ” .  uNn - I  
whose columns are vectors ii,. 

If it is necessary to investigate correlations between the orbital arcs, i.e., 
groups of series, we shall interchange the indices s and k in Eq. (60). Then matrix 
(61) will be transformed to the form U=( i i ik )  ( i =  1 , 2 , .  . . , N ;  k =  
1,2 ,  . . . , m ) .  

In radio astrometry, series of VLBI observations is carried out during 
twenty-four hours, therefore AT = 1 sideral day. In addition, index k designates 
some base of the VLBI network. In optical astrometry in the case of synchronous 
observations by a group program, one usually has A T = 4  hours and index k 
designates the number of the link. In other respects, matrices U, and Uk are 
constructed in the same way. 

The columns of matrix (61) can be considered as separate realizations of a 
random process U ( t ) ,  and their rows, as its sections at the moments ti .  The 
covariance function q(tj ,  t,) of a process U ( t )  can be presented as a N x N matrix 
Q, = (4;;) with the elements 

1 11 

Assuming that i = j, we obtain the variances of observations 

u: = q( t j ,  ti) = qii (i = 1, 2, . . . , N ) .  

These values can be used to control the completness of data models over the time 
interval AT. In the ideal case, individual values of u: should not differ 
significantly from each other. Otherwise, the GIS model should be expanded by 
taking into account the time-depending errors of observations. 

Meanwhile, the transposed matrix (61) can be considered as N realizations of 
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the random process U ( s )  = (iisj). By subtracting the mean value 

from each row of matrix (61), we obtain the covariance function q(s ,  r )  of the 
centralized process U ( s )  in the form of a n X n matrix Q, = (q.yr) with the 
elements 

When s = r ,  we obtain the variances of the series 

0: = q(s ,  s) = qys,  (s = 1, 2, . . . , n).  

It is obvious that the mean variance of all the data is 

Practical experience (Gubanov et al. 1992) shows that the covariance function 
(62) should be smoothed in order to choose a regular part of covariances. This 
procedure is carried out most effectively in terms of a certain system of physical 
variables ( E ,  r )  that are connected with indices (i, j )  by some linear transforma- 
tion ( i , j ) + ( g ,  q) .  The following can be taken as the new variables: the 
temperature of the air, the OSO positional angle or the zenit distance, etc. After 
two-dimensional $moothing, the covariance function q( E ,  q )  is converted to a 
smoothed matrix Q, = (qi,) by means of the inverse transformation ( E ,  7) 3 (i, j ) .  

If the original data are sorted according to the indices i and s, the specified 
covariance matrix of the united residual vectors u = ( i i iS )  can be defined as the 
following block-matrix: 

I Q t i  Q12 . . .  Q I H  

I Qni Qn2 . * . Q,,, 
where Q,, is the N X N matrix of covariances between thc 

Q,, = q,,& 

series determined as 

(65) 
Here K, = (k,,) is the correlation matrix, obtained by transforming the smoothed 
matrix Q,: 

It should be noted that the variance-covariance matrix of the errors iik = ( E i k )  
obtained by averaging of all the series of a given link (arc, base) over k can be 
obtained from (64) using the rule of covariance summation, 
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We can judge from (65) that if the mutual covariations of the series vanish, i.e., 
qrr = 0 if s # r, the covariance matrix of observations (64) turns into a block- 
diagonal matrix, 

Q,, = diag(Q,),, (s = 1 ,2 ,  . . . , n) .  
In such a case the adjustment process can be carried out using a simple version 
described in Sect. 3.2. However, if also kij = O  when i # j ,  the matrices Q, 
become strictly diagonal, 

In the limiting case when, according to (63), c$ = 0; = o:, we have Q, = aiI 
where I is the nN X nN unit matrix. 

In this way, one of the problems connected with the adjustment of group 
observations is the reduction of the covariance matrix Q, to the block-diagonal 
type. If the data model is complete enough, this can be achieved by iterative 
process specifying in each consecutive order the parameters of the data model 
and the covariances of the residuals. However, if the possibilities of expansion of 
the data model become too limited, it is necessary to make arrangements for the 
stabilization of the generalized instrumental system. 

3.5. Global Adjustment of Independent Catalogues 

Let us consider the problem of global adjustment of individual independent 
catalogues of stellar coordinates obtained from observations with several instru- 
ments located at different latitudes. Assuming that the declination zones of these 
catalogues cover the whole sky, it is necessary to obtain the general global 
catalogue of star coordinates using this data. 

The individual catalogues Ck (k = 1, 2, . . . , M) represent a joint data set only 
if they have a common global initial catalogue C (see Sect. 3.1). At present this is 
the FK5. 

In the general case, when observations have been carried out with instruments 
of a non-orthogonal type (e.g. the astrolabe), the systematic errors of the initial 
catalogue C influence the observations according to (7) and (8) as follows: 

b = Eb, + Fba = EB,y, + FBbyb = By, (68) 
where E and F are the diagonal matrices of known coefficients determined by the 
type of instrument and the program of observations. Vector functions b, and b, 
can be represented according to Schwan (1983) as follows: 

(69) 
m n  

ba(a, 6) = 2 (ck,, cos m a  + dk,  sin mcu)P,(6). 
m n  

Here P,( 6) are the Legendre polynomials with normalized arguments 
B = 2(6 - 6,)/(6, - 6,) - 1, 

where 6 E [a,, a,]; 6, and 6, are the declination zone boundary of the individual 
catalogue. 
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Thus, according to (68) and (69), 

The rows of matrices B, and B;, are the basis functions of the expansions (69). 
In particular case when orthogonal meridian instruments are used, one of the 

matrices E and F in (68) is a zero-matrix, and then b = b, = Baya (observations 
of right ascensions) or b = bb = Bbyb (observations of declinations). 

Let us first consider the global adjustment process for one of the equatorial 
coordinates of stars. It is assumed that the parameter vector Yk and the influence 
matrix Bk of the systematic errors of the initial catalogue C are known from the 
internal adjustment of observations with the instrument of the number k, as 
described above (see Sect. 3.2-3.3). Representing systematic errors of this 
catalogue in the form of a global expansion over spherical functions, 

b = Gz = c c (c,,, cos p a  + dvv sin pa)Pt(sin d), (71) 
P V  

where z = (c,,,, dPy) is the parameter vector, P t  is the associated Legendre 
polynomial, we obtain a system of parametric equations: 

bk = BkYk = GkZ, 

where the left-hand side bk(a ,  6) can be calculated using one of equations (69) 
for each star of the initial catalogue C in the declination zone [d, ,  &Ik.  Adding 
the residual vector wk known from the internal adjustment of the catalogue Ck, to 
vector bk, we obtain the following parametric data model: 

Ik = G k Z  -k Wk, ( k  = 1, 2, . . . , M ) ,  (72) 
where Ik = bk + wk, wk = uk + v, uk is the quasi-random vector of the residual 
errors of observations, v defined by Eq. (7) is the global vector of individual 
corrections to the star coordinates, and Gk is the influence matrix defined in zone 
[6,? d2]k by Eq. (71). 

The weight matrix of the joint data vector 1 = (Ik) is 

where 

As the residual quasi-random errors of observations u = (uk) are independent for 
different catalogues ck, their variance-covariance matrix 

Q, = diag(&),, ( k  = 1, 2, . . . , M ) ,  (73) 
where the blocks (Qkk), are given by Eq. (66) for each individual catalogue Ck 
and can be evaluated at the last step of its internal adjustment. 

As regards the covariances of individual coordinate corrections, the form of 
matrix Q,, depends on the overlapping of the declination zones [a,, 621, of the 
individual catalogues ck. If these zones do not overlap, matrix Q,, is of the 
block-diagonal type, 

Qu = diag(Qkk),,, 
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and its blocks are strictly diagonal, 

(Qd, = diag(u?),, (i = 1, 2, . . . , K ) ,  (74) 
where (cr,), are known RMS values of the random errors of stellar coordinates for 
the initial catalogue C,. In this case the solution of the system (72) can be 
obtained by the simplified algorithm described in Sect. 3.2. When the catalogue 
declination zones overlap, the matrix Q, is not of a block-diagonal type and the 
general algorithm described Sect. 2.1 should be used for solving the system (72). 

In the case of observations with non-orthogonal instruments, vectors y, and yb, 
determined by internal adjustment of the catalogues C,, may be correlated, 
therefore the corrections to both coordinates must be adjusted simultaneously. 
Then it is necessary to take, by analogy with (70), 

1 = (I,> 161, 

G = [G, Gal, z = (zm, zb), z, = (C,W d,,,), zs = (c;,, dJLY), 
w = (w,, WsL v = (v,, V b ) ,  b = (b,, bb), 

where elements of matrices G,  and G6 are defined in terms of the same spherical 
functions (71). 

Sorting the data vector 1 in the order 1 = (I,, IS) and taking into account that the 
residuals w, and ws are mutually independent, we obtain after simple calculations 

Q, = Q, + Q, + Q,, 
where 

Matrix Q, is determined by Eq. (66) in the internal adjustment process of the 
joint catalogue of right ascensions and declinations. If the data model used is 
sufficiently complete, matrix Q,, may be obtained in a strictly diagonal form (67) 
after several iterations of such processes. 

The blocks of matrix Qy are 

(Q,W)y =B,(Q,y,)B:, (Q,s)Y =B,(Qy,JB,'t (QssIY = Bb(Qy,,,,)B'& 
and are determined by the internal and mutual covariations of vectors y, and y b  
obtained from the internal adjustment of the catalogue C,. As the basis in 
expansion (69) is orthogonal, diagonal blocks (Q,,)y and (Qs6)y are practically 
strictly diagonal and determined by Eq. (74). Only in this case the variances cr; 
are the a priori accuracy estimates of the independent catalogue Ck in a 
systematic respect. 

Information about mutual correlations between random errors of the FK5 right 
ascension and declination values is absent. Therefore, non-diagonal blocks of 
matrix Q, vanish and diagonal blocks (Qm,), and (Q,,),, are strictly diagonal and 
determined by Eq. (74). 

The parametric adjustment of VLBI observations made with a separate radio 
interferometer or a multi-base complex yields the vector vk = (vr, v * ) ~  of 
corrections to initial coordinates of extragalactic radio sources and the complete 
variance-covariance matrix, 
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Thus, the joint adjustment process for these data converges to the solution of the 
parametric system vk = v ( k  = 1, 2, . . . , M) with a block-diagonal weight matrix, 

( P k ) t ,  = 020 diag(Qk,)i1. 
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APPENDIX 

THE PROGRAM OF PARAMETRIC ADJUSTMENT BY GLS 
TECHNIQUES 

SUBROUTINE PAM (A, B, C, D, E, F, P, R, X, SX, S, N, M, K, IB, IC, 
IP, IR, M1, M2, DET) 

C PAM-PARAMETRIC ADJUSTMENT METHOD 
C A-INPUT DESIGN MATRIX OF DIMENSION NA = N * M 
C GIVEN BY COLUMNS (KEEP) 
C 
C IT IS NOT USED 
C 
C 
C 

C 

C VECTOR IF ‘IB’#O 

C 
C 
C USED 

B-INPUT DATA VECTOR OF LENGTH N (KEEP); IF ‘IB’ = 0 

C-WORK AREA OF DIMENSION NC = (M + K) * (M + K): 
OUTPUT MATRIX OF THE ESTIMATED PARAMETERS 
MUTUAL CORRELATIONS OF DIMENSION MC = M * M IF 

THE SAME DIMENSION IF ‘IC’ # 0 
C ‘IC’ = 0 OR THEIR VARIANCE-COVARIANCE MATRIX OF 

C D-WORK AREA OF LENGTH N; OUTPUT RESIDUALS 

C E-INPUT MATRIX OF THE LINEAR RESTRICTIONS AND 
THEIR INDEPENDENT TERMS OF DIMENSION NE = K * 
(M + 1) GIVEN BY ROWS (KEEP); IF ‘K‘ = 0 IT IS NOT 

C 
C 
C 
C 

F-WORK AREA OF LENGTH M + K 
P-INPUT WEIGHT MATRIX OF DATA (KEEP) 
R-INPUT MATRIX OF REGULARIZATION (KEEP) 
X-OUTPUT PARAMETER VECTOR OF LENGTH M; IF 

C 

C OF LENGTH M 

‘IB’ = 0 IT IS NOT USED 
C SX-OUTPUT R.M.S. VECTOR OF ESTIMATED PARAMETERS 
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C 
C PARAMETER 

%OUTPUT R.M.S. OF UNIT WEIGHT; IF ‘IB’ = 0 IT IS INPUT 

C 
C 
C K-INPUT NUMBER OF LINEAR RESTRICTIONS ( K =  

C 

N-INPUT NUMBER OF ROWS IN MATRIX A (N > 1) 
M-INPUT NUMBER OF COLUMNS IN MATRIX A (M < N) 

C 0,1, .  . .) 

C 
IB-INPUT SYMBOL OF DATA VECTOR MODE PRESENCE: 

IF ‘1~7 = 1 THE DATA ARE GIVEN, 
C 
C INPUT PARAMETER, 
C 
C 

C PRESENCE: 
C 

C 
C PRESENCE: 
C 
C 
C 
C 
C 
C PRESENCE: 

C 
C 
C 
C 
C 
C 
C 
C NOTES: 
C 
C 

IF ‘IB’ = 0 THE DATA ARE NOT USED: ‘S’ BECOME AN 

R.M.S. VECTOR ‘SX’ AND MATRIX ‘C’ ARE CALCULED, 
BUT AREAS ‘B’ AND ‘X’ ARE NOT USED 

C IC - INPUT SYMBOL OF THE OUTPUT MATRIX ‘C‘ MODE 

IF ‘IC’ = 0, C IS THE CORRELATION MATRIX, 

IP-INPUT SYMBOL OF THE INPUT MATRIX P MODE 
C IF ‘IC’ # 0, C IS THE VARIANCE-COVARIANCE MATRIX 

IF ‘IP’ = 1, P IS SYMMETRIC MATRIX OF DIMENSION 
NP = N* (N + 1)/2, 
IF ‘IP’ = 2, P IS DIAGONAL MATRIX OF LENGTH NP = N, 
IF ‘IP’ = 0, P IS NOT USED 

IR-INPUT SYMBOL OF THE INPUT MATRIX R MODE 

C IF SIR’ = 1, R IS SYMMETRIC MATRIX OF DIMENSION 
NR = M * (M + 1)/2, 
IF ‘IR’ = 2, R IS DIAGONAL MATRIX OF LENGTH NR = M, 
IF ‘IR’ = 0, R IS NOT USED 

M1, M2-WORK AREAS OF LENGTH NM = M + K (INTEGER) 
DET-OUTPUT DETERMINANT OF THE NORMAL SYSTEM 

1. IN CASE OF IB, K, IP, IR = 0 UNUSED AREAS B, X, E, 
P, R ARE DESCRIBED IN MAIN PROGRAM AS B(1), 

2. OTHER ROUTINES REQUIRED: MINV, LOC. 
C X(1), W ) ,  W ) ,  R(1). 

C CONSTRUCTION OF THE NORMAL EQUATIONS 
do1 i =  1, m 
f(i) = 0. 
do2 j = 1 ,  n 
d(j)=a(n*(i- 1)+j)  
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if (ip.eq.2)d(j) = d(j) * p(j) 
if( ip.ne . 1)goto 2 
d(j) = 0. 
do3 ij  = l ,n 
CALL LOC( i j , j ,ljp,n ,n, 1) 

3 d(j) = d(j) + a(n * (i - 1) + ij) * p(1jp) 
2 continue 

do4 ij  = i,m 
il = (ij - 1) * mk + i 
li = (i - 1) * mk + i j  
c(i1) = 0. 
do5 j = 1,n 
if(ij.eq.i)f(i) = f(i) + d(j) * b(j) 

5 c(i1) = c(i1) + d(j) * a(n * (ij - 1) + j) 
4 c(li) = c(i1) 
1 continue 

C 
C WITH LINEAR RESTRICTIONS 

BORDERING OF THE NORMAL SYSTEM 

if (k.eq.O)goto 8 
do6 j = l ,k 
f(m + j) = e((m + 1) * j )  
do7 i = 1,m 
ji = mk* (i - 1) + j + m 
ij =mk*(m + j - 1) + i 
c(ji) = e(i + (m + 1) * (j - 1)) 

7 c(ij) = c(ji) 
I do6 i = 1,k 

6 c(mk* (m + j - 1) + m + i )  = 0. 

C REGULARIZATION OF THE NORMAL SYSTEM 

do9 i = l , m  
do9 j = i,m * (2 - ir) + i * (ir - 1) 
CALL LOC(i, j ,ijr,m,m,ir) 
ij = mk * (j - 1) + i 
j i  = mk*(i - 1) + j 
c(ij) = c(ij) + r(ijr) 
if(ij.ne.ji)c(ji) = c(ji) + r(ijr) 

8 if(ir.eq.0)goto 10 

9 continue 

C INVERSION OF THE MATRIX BY GAUSS-JORDAN WAY 
10 CALL MINV(c,mk,det,ml,m2) 

if(ib.eq.0)goto 17 

C ESTIMATION OF THE PARAMETER VECTOR 
do11 i = 1,m 
x(i) = 0. 
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doll  j = 1,mk 
11 x(i) = x(i) + c(mk * (j - 1) + i) * f(j) 

C COMPUTATION OF THE RESIDUAL VECTOR 
do12 i = 1,n 
d(i) = b(i) 
do12 j = 1,m 

12 d(i) = d(i) - a(n * (j - 1) + i) *x(j) 

C COMPUTATION OF THE UNIT WEIGHT R.M.S 
s = 0. 
do13 i = 1,n 
if(ip.eq.0)sum = d(i) * d(i) 
if(ip.eq.2)sum = p(i) * d(i) * d(i) 
if(ip.ne.l)goto 13 
sum = 0. 
do14 j = 1,n 
CALL LOC(i,j ,ij ,n,n,l) 

14 sum = sum + p(ij) * d(j) * d(i) 
13 s = s + s u m  

zn = FLOAT(n - m) 
if(ir.eq.0)goto 15 
do16 i = 1,m 
CALL LOC(i,i,ii,m,m,ir) 
if(r(ii).eq.O.)goto 16 
zn = zn + 1. 

16 continue 
15 s = SQRT(s/zn) 

C COMPUTATION OF THE ESTIMATED PARAMETERS R.M.S 

f(i) = c(mk * (i - 1) + i) 
17 do18 i = l ,m 

18 sx(i) = s * SQRT(f(i)) 

C COMPUTATION OF THE CORRELATION OR COVARIANCE 
C MATRIX 

if (ic.ne .O)goto 20 
do19 i = 1,m 
do19 j = 1,m 

19 c(m * (j - 1) + i) = c(mk * (j - 1) + i)/SQRT(f(i) * f(j)) 
20 return 

end 
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