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ON THE CENTRAL SURFACE BRIGHTNESS OF 
GALACTIC DISKS 

SERGEJ G. SIMAKOV 
Sternberg Astronomical Institute, 119899, Moscow V-234, USSR 

(1 September 1992) 

In the framework of the Lin-Pringle model of the galactic disk evolution, the observed approximate 
constancy of the central surface brightness I, of an exponential disk is discussed. The disk is assumed 
to be embedded in a massive halo of the cold dark matter. We suppose that a protogalaxy acquired its 
angular momentum from tidal torques by interaction with surroundings at early stages of its 
formation. A self-similar solution for the stellar component evolution and the condition of total disk 
angular momentum conservation allow to estimate the disk central surface density (and luminosity) as 
a function of halo parameters. These parameters are determined by the amplitude and spectral index 
( n )  of the density fluctuations from which the galaxy has been formed. It is shown that if n = -2 at the 
galactic scale (CDM-model), I, is constant and independent of other galactic parameters. The 
predicted values of I,  are in a good agreement with the observed ones if galaxies have been formed at 
rather high peaks of cosmological density fluctuations. 

KEY WORDS Galactic disks, galactic evolution, structure of galaxies 

1. INTRODUCTION 

Photometric investigations of the galactic disk structure have revealed an 
exponential surface brightness distribution along the disk radius (Freeman, 1970): 

Z = I, exp( - CUR). (1) 
The magnitudes of the face-on central brightness of different galaxies turned out 
to be very close to each other. Moreover, I ,  does not correlate with any galactic 
parameter. There have been considerable debates on the reality of the I, 
constancy (for discussion, see Van der Kruit, 1987), but now it seems well 
justified that galactic disks really have very close central surface brightness 
-21.65 m/arcsec2 within a small range of magnitude. 

Van der Kruit (1987) was perhaps the first who made a successful attempt to 
explain this phenomenon. His model is based on Gunn’s (1982) scenario of the 
disk formation. According to this scenario, the galactic disk is formed as a result 
of the homological contraction of barionic matter under the conservation of 
specific angular momentum h. The disk formation proceeds relatively slowly, at 
the time scale comparable to the lifetime of the flat subsystem. The distribution 
h(r)  has been proposed to be the same as that of a uniformly rotating, uniform 
sphere (Mestel, 1963). In this case the exponential distribution of the disk density 
is maintained permanently. A simple model of the spherically symmetric collapse 
of the halo yields the relation between halo and disk parameters. A specific link 
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between the cosmological density fluctuation amplitude (from which the galaxy 
originated) and the halo mass leads to the independence of 1, of other galactic 
parameters. An appropriate parameterization of the problem has allowed Van 
der Kruit to obtain the vaIues of the face-on brightness close to the observed 
ones. 

Unfortunately, Gunn’s model has some essential shortcomings. For example, it 
is hard to conceive that each element of gaseous protogalaxy “knows” the place 
in the disk where it must fall during the collapse. For the exponential distribution 
to be maintained, this element must accrete to the distance from the center where 
its specific angular momentum is equal to that of the disk. Otherwise, a 
momentum exchange occurs between the disk and the infalling matter and the 
resulting strong radial flow distorts the exponential distribution. It is difficult also 
to understand why the protogalaxy could rotate uniformly (Gunn, 1987). 

Another approach to the galactic disk evolution considers a relatively fast 
formation of the flat subsystem instead of a slow accumulation of matter in the 
disk. We believe that the flat galactic subsystem has been formed due to the 
contraction of the gas in the gravitational field of the massive halo. In this case 
the typical time of the disk formation is the free-fall time determined by the mass 
M h  and the dimension Rh of the halo: 

td == (R:/2GMh)’” (2 )  
This time is known to be quite short in comparison with the subsequent 
evolution. For typical galaxies it is of the order of billion years. td can be 
considered as the initial moment of the disk evolution. 

A young gaseous disk of the protogalaxy evolves due to the angular momentum 
redistribution and star formation. Both produce the final density profile similar to 
the observed one. Lin and Pringle (1987a) have confirmed this scenario by direct 
numerical simulations. Note that the distribution (1) has been shown to appear 
when the typical star formation time z, and the matter flow time z, = R2/v  are 
comparable to each other (here R is the radius and Y denotes the kinematic 
viscosity): 

z, = pzs. (3) 
(It can be shown that /3 has to be close to unity to reproduce both the density 
profile of the disk and the chemical abundance of the gas-see below). It is 
natural to expect that these scales are close to each other when they are 
determined by the same physical process. A good candidate for such a process 
can be the large-scale gravitational instability. As proposed by Lin and Pringle 
(1987b), this instability promotes the angular momentum redistribution. These 
authors have assumed that the disk did not split into distinct selfgravitating bodies 
but rather instabilities give rise to density waves which transfer angular 
momentum. One can say that this complicated motion of gaseous masses 
stimulated by instability reminds turbulence. So, the gas of the disk behaves like a 
viscous medium. Following Lin and Pringle (1987b), we define the corresponding 
effective viscosity as 

= ~ 2 2 2 1 ~ 3 ,  (4) 
where we omit a numerical factor of order unity. Here G and Q are the 
gravitational constant and the angular velocity, respectively and 2 is the gas 
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surface density. Eq. (4) can be easily obtained if we choose the typical length 
scale of the “turbulence” to be equal to the largest wavelength of the 
gravitationally unstable mode: L = GZ/Q2 (Toomre, 1964). Since the instability 
growth rate is of the order of IR, the effective kinematic viscosity takes the above 
form. 

On the other hand, the large-scale instability can control the gas consumption 
(or the star formation rate) in the disk. This conclusion is supported by the fact 
that the density profile and magnitude in a major part of a gaseous galactic disk 
are very close to ones predicted by the marginal stability condition (Zasov and 
Simakov, 1988; Kennikutt, 1990). 

Fall and Efstathiou (1980) also confirm the idea that such instability is a good 
stimulator of star formation. These authors found a good correlation between the 
typical size of luminous galactic disks and the distance R ,  (in the disk plane) 
where the instability condition is violated. Beyond this distance, the rate of star 
formation is very low (there is no stimulator) and the disk luminosity decreased 
sharply. Due to this, the present-day galaxies look truncated at this radius. 
Further we assume that the gravitational instability is the prime mover of the disk 
evolution. 

Besides the exponential luminosity distribution, the L-P model predicts a 
negative gradient of the gas abundance distribution Z ( R )  is late-type galaxies. 
According to this model, the behavior of Z ( R )  is accounted for by the following 
processes: the increase of the gas abundance owing to metal production in stars 
and dilution by a weakly enriched matter flowing in from outer parts of the 
galactic disk, This scheme is supported by both numeric (Yoshii and Sommer- 
Larsen, 1990; Clarke, 1989) and analytic calculations (Simakov, 1990, hereafter- 
SGS). 

So, two important properties of galactic disks (the distribution (1) and a 
nagative Z gradient) have been explained by the model. Below we shall show that 
the proposed scenario naturally explains an approximate constancy of I,. 

2. BASIC EQUATIONS AND RESULTS 

Let us consider a protogalactic gaseous disk surrounded by a massive dark halo. 
These halos are known to manifest themselves in long, flat rotation curves of 
late-type galaxies (Einasto et al., 1974; Bosma, 1981) and in the hot coronae of 
the ellipticals (Forman et al., 1985). We suppose below that the angular velocity 
Q ( R )  a R - k  does not depend on time and is determined by the matter distribution 
in the spherical component (the halo and the bulge). Note that the rotation curve 
in the inner parts of a galaxy is strongly affected by the mass distribution in the 
flat subsystem. Therefore, one should solve a self-consistent problem taking into 
account the evolution of the gravitational field due to the disk matter redistribu- 
tion. It was made by Saio and Yoshii (1990) who repeated Lin and Pringle’s 
numerical calculations under the assumption that the disk is selfgravitating. They 
also found that the surface density of such a disk embedded in a massive halo 
evolves to an exponential distribution. 

The viscous redistribution of the gas in the disk plane makes the conditions in 
the disk to be very similar to those in the well-known ordinary accretion disks 
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around stars. This similarity allows us to use the accretion disk theory. Taking 
into account the star formation process (the function V ( R ,  t )  = ZJT, below) we 
obtain the following set of basic equations describing the evolution of the galactic 
disk (Lin and Pringle 1987a; Yoshii and Sommer-Larsen; SGS): 

dZS 
dt 
-= (1 - R,)V(R, t ) .  

Here the prime denotes the derivative d/dR and Zs is the surface density of the 
disk of stars. These equations involve the instantaneous recycling approximation. 
by introducing the fact 1 - R,, we take into account the mass of the gas coming 
back to the interstellar medium. According to the well-known definition of R, 
(e.g. Marochnik and Suchkov, 1984), we can write 

mm 
1 - R, = 1 - Im, (rn - rm)$(rn) dm. (7) 

Here r,,, is the mass of a stellar remnant, m and mms denote the current star mass 
and the mass of a star leaving the main sequence, respectively, and $(m) is the 
stellar mass distribution. 

It is naturally to choose the following initial condition: C,(t = tinitial = t d )  = 0. 
Indeed, the gravitational instability, provided playing the key role in the disk 
evolution, cannot develop before the initial chaotic motions (resulting from the 
collapse) have decayed to a considerable extent. Therefore, the disk had enough 
time to remain purely gaseous. 

To solve the problem (5-6), it is convenient to introduce new variables similar 
to those proposed by Lyubarskii and Shakura (1987): h = QR2 and F = hC3/Q3. 
Then Eq. ( 5 )  takes the form 

dF Fmd2F DF"+' 
-==--T---- dt hn dh d hn+2 ' 

where d = k(2  - k ) / ( l  - R,), D = 3k(2 - k ) G 2 ,  m = 2 / 3  and It = - 1 / 3 .  By virtue 
of dimensional arguments, solution of Eq. (8) can be found in the form 

h ( n  +2)lm 

F(h, t) = ___ (Dt)l/PI (9) 

where Y is a dimensionless function of the dimensionless variable 5 = h /Ata, 
0 < < 1. One should determine the power-law index a! and the constant A. Let 
us choose Y ( l )  = 0 as the outer boundary condition and suppose that the viscous 
force vanishes at the inner edge of the disk: F(h  -+ 0)- 0. 

Using standard similarity methods (Sedov, 1972; Barenblatt, 1978) one can 
easily obtain the solution of Eq. (8) for F and subsequently, for 2,. Following Lin 
and Pringle (1987), Yoshii and Sommer-Larsen (1989) and SGS, we present the 
solution at t >> t,, , which is formally written as for t +. m, in the form 

hY C, = &,7g(h/At"). 
R 
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Here g is given by 

g(x) = 

BRIGHTNESS OF GALACTIC DISKS 331 

B J p ,  (m + l)/m) if x < 1, 
B ( p ,  (m + l)/m) if x 3 1, 

where B and B, are the complete and incomplete /3-functions, respectively. The 
argument p reads 

Furthermore, 

1 m - 1  YE-+- 
m a m  

a = 0.5(-4 + (1 + 4/3/d)'I2), 

ff = (4 + (1 + 4p/d)"2)-1, 

b = -3a. 

The only parameter which remains to be found is A. Its value can be easily 
derived basing on the total angular momentum conservation in the disk: 

m 

y d  = 2 n b  Z,(R)h(R)R dR. (17) 

The upper limit of the integral is infinite because the outer boundary of the disk is 
defined as = 1. Since f tc h l t q  for t -+ 00 we have h + 03 and R + ofl. At the latest 
stage of the evolution, the disk consists mainly of stars. The mass of the gaseous 
component is small in comparison with the total mass of the disk. Therefore, the 
stellar component contains all the angular momentum of such a disk. This is why 
we write Z, in Eq. (17). With the help of Eq. (lo), Eq. (17) can be rewritten as 

Let us assume now that the protogalaxy has acquired its rotation due to tidal 
interaction with the environment at an early stage of evolution (Peebles, 1969). It 
is natural to expect in this case that the specific angular momentum in the disk 
and the halo are approximately equal (Fall and Efstathiou, 1980): 

Let 

where f = Md/Mh,  and hh is the specific angular momentum at the halo boundary. 
Below we put f = 0.1 in accordance with the numerical simulations of galactic 
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halo formation (Blumental et al. 1986) and A = A/t;. The latter relation and Eq. 
(18) yield 

where 

:=J XYg(X)dX .  
0 

Using the expressions for td ( 2 )  and Yd (20)  given above we rewrite (21) as 

The term in a square bracket is denoted by x .  This parameter being multiplied by 
hh gives the length scale of the stellar disk. 

Finally, using Eqs. (10) and (23) we obtain 

Z, = Zso(h/Xhh)Y-U(2-k) g ( h  / X h h ) .  (24) 
The behavior of Z,(h/Xhh) for some certain values of /3 and k is illustrated by 
SGS (similar results can be found in Yoshii and Sommer-Larsen, 1989). An 
approximately exponential surface density profile appears almost everywhere 
except the central part. (We should stress that such distortion of the exponential 
density profile near the center is reproduced in numerical calculations which take 
into account the self-gravity of the disk (Saio and Yoshii 1990).) Therefore, one 
can assume that Z,(x) = Zso exp(-x) for the whole range of integration. This 
assumption can be used to estimate :. For k = 1 we have, for example, f = 2 (this 
is the case used below). 

Since Z,(R) has an almost exponential behavior, it is natural to identify Zso 
with the central density of an exponential disk. After some algebra the following 
expression can be easily obtained: 

Here we use the definition hh = v m .  
The last step is to be done. We need a relationship between the halo dimension 

Rh and its mass Mh. This relation can be deduced from a simple spherically- 
symmetric galaxy collapse model (Peebles 1980; Faber 1982): 

Rh = 0 . 4 5 M : ~ 3 h ~ U 3 ( ~ t ~ ) - '  MpC, (26) 
where vr denotes the amplitude of the density fluctuation from which the galaxy 
has originated, a is the mean square amplitude of the fluctuations and 
M,, = Mh/1012Mo. It should be noted that a depends on the mass of the forming 
galaxy. As follows from simple similarity analysis of hierarchical clustering, 

. The value of a,, is rather strictly limited by the observations of 
the galaxy distribution in the Universe. It should be set a, = 5 for the galactic 
correlation function to be well reproduced (Blumental et al., 1986). As far as the 
index n is concerned, it is approximately equal to -2 at the galactic mass scale 
(Davies el al., 1985). Such a value is predicted by the popular CDM model of 

<T = a ~ - 1 / 2 - n 1 6  
0 12 
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Universe structure generation with a flat initial spectrum. In this case Eq. (26) 
gives Rh 0: Min and we have 

where a, = uo/5. 

DISCUSSION 

As follows from Eq. (27), there is no dependence of Zs0 on the galactic mass or 
galactic size in a full accordance with observations. In Table 1 we present some 
numerical values of &,, 1, and Bo = 27 - 2.5fg(Z0). The transition from Xs0 to 1, 
has been made with the help of the mass-luminosity ratio, M I L ,  which is assumed 
to be equal to 4. Comparing the predicted magnitudes with the observed ones 
(Bo = 21.65 m/arcsec2), we can conclude that the agreement of the theory with 
observations is achieved under the condition that galaxies have been generated 
from rather high peaks of cosmological density fluctuations, vr > 1. A similar 
conclusion has been obtained on the basis of the numerical simulations of the 
large-scale structure of the Universe (Davies et af . ,  1985). 

Besides vr, there is another parameter which is important for the magnitude 1,. 
This parameter is p(1- R,) (below we take 1 - R, = 0.7 in accordance with 
Salpeter’s stellar mass distribution), and vr. An admissible range of the /3 values is 
narrow. If p>3, the final disk density profile would not be similar to the 
observed one. The values p < 0.3 correspond to a very small abundance gradient 
which is in conflict with observations of spiral galaxies. We do not know now 
what is the reason for such a narrow range of p. A detailed theory of star 
formation would be able to answer this question. 

The dependence of 1, on the power-law index of the fluctuations spectrum, n, is 
weak. 

The dependence of Z, on the cosmological parameters stems from the 
significance of the halo in galactic dynamics. In our case, the halo mass 
distribution determines the magnitude of the angular velocity which, in its turn, 
controls the star formation rate and intensity of the matter redistribution through 

Table 1 

3.0 1.5 1339.0 334.7 
1.75 1822.5 455.6 
2.0 2380.5 595.1 

2.0 1.5 399.0 99.8 
1.75 543.1 135.8 
2.0 709.4 177.4 

1.5 2.0 370.7 92.7 
2.25 469.2 117.3 
2.5 579.2 114.8 

20.7 
20.4 
20.1 
22.0 
21.7 
21.4 
22.1 
21.8 
21.6 
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the instability. One can say that the central surface brightness is, in some sense, a 
bridge connecting two essentially different scales of the cosmic hierarchy, the 
galaxy cluster and supercluster scale and the scale at which the features of the 
galactic disks are exhibited. 

We would like to stress that the CDM model of the Universe structure has 
some difficulties in explanation of the galaxy cluster distribution (Frenk, White 
and Davies, 1983; Collins, Joseph and Robertson, 1986). Some other theory 
might be more successful in reproducing the matter distribution. But the fact that 
fluctuations with the spectral index equal to -2 at the galactic scale provide a 
good description of the galaxy formation and properties implies that the spectrum 
of the fluctuations in this new theory should be close to the CDM one at the 
galactic scale. 

CONCLUSION 

To summarize, taking into account results of other works, one can say that the 
Lin-Pringle model of the galactic disk evolution successfully explains all most 
important large-scale features of galactic disks; the exponential luminosity 
distribution, the approximate constancy of Z, and the negative gradient of the 
chemical abundance. 
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