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THE POLOIDAL FIELD OF A SLOWLY 
ROTATING AXISYMMETRIC ROTATOR (AN 

AXISYMMETRIC ROTATOR MAGNETOSPHERE) 

S. V. BOGOVALOV 

Moscow-Engineering-Physics Institute, Kashirskoe shosse 31, 115409, MOSCOW, 
Russia 

(July 16, 1992) 

The equation governing the poloidal field of an axisymmetric rotator is derived. The equation is 
obtained in the MHD approximation with allowance for relativistic effects, plasma pressure and 
gravitation of the central object. The problem of cold plasma ejection from the magnetosphere of an 
axisymmetric rotator at small angular velocities is solved with the help of this equation. Rotation is 
considered as a small perturbation of a magnetosphere. An analytical expression for the corrections to 
the poloidal magnetic field is obtained. The solution shows a poleward deflection of the flow due to 
the magnetic force of spiraling field lines. 

KEY WORDS Pulsars, magnetosphere, plasma ejection. 

Rapidly rotating neutron star with strong magnetic field represents a generally 
accepted model of radio pulsars. It is well known that the magnetic dipole 
rotating in a vacuum emits the magnetodipole radiation if the angle between the 
axis of rotation and the direction of the magnetic moment differs from zero. The 
magnetodipole emission is absent for the axisymmetric rotation in vacuum. The 
rotating object does not lose energy of rotation in the this case. 

Real pulsars do not rotate in vacuum. Even for an axisymmetric rotation, a 
magnetized neutron star produces dense ece- plasma in the magnetosphere 
(Ruderman and Sutherland, 1975; Arons, 1983). The plasma is ejected to infinity 
along open field lines. The presence of the plasma strongly changes the energy 
losses of an axisymmetrically rotating neutron star. The so-called current losses 
appear. They are connected with the generation of an azimuthal magnetic field in 
the magnetosphere. The energy loss rate for an axisymmetric rotator is (Beskin, 
Gurevich & Istomin 1983) 

1 H2R6Q4.  
L = - -  1, 4 c3 

where H is the magnetic field on the surface of the pulsar, R is the radius of the 
neutron star, L2 is the angular velocity of the star rotation, c is the speed of light 
and i is the electric current density flowing from the polar cap normalized by the 
Goldreich-Julian electric current density LGT = Q H / 2 n  (Goldreich and Julian, 
1969). For pulsars, i = 1 (Bogovalov, 1991). Therefore, an axisymmetric rotating, 
magnetized neutron star losses the energy of rotation at the rate comparable to 
the rotational energy loss rate of an obliquely rotating star in vacuum. 
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The energy losses (1) are equal to the total flux of electromagnetic field energy 
from the star. This energy is transformed into the kinetic energy of particles at 
the AlfvCn surface of the axisymmetric rotator magnetosphere. In this region, a 
supersonic wind of relativistic particles with the total power equal to the total 
energy losses of the neutron star is formed (Bogovalov, 1990). For example, in 
such a pulsar as Crab, the particles have the mean energy 104mc2 inside the 
AlfvCn surface. Beyond the AlfvCn surface, the particles are accelerated to the 
energy of the order of lo7 mc2. 

So, we see that all basic processes observed in real pulsars such as the plasma 
generation, the effective deceleration of the star, the acceleration of the particles 
to the energy as high as 107mc2, and the formation of a supersonic wind of the 
power comparable to the total spindown losses of the star take place in the 
magnetosphere of an axisymmetric rotator. In this connection we suppose that 
the model of an axisymmetric rotator is adequate for real pulsars. 

Below we discuss an analytical solution of the problem of the structure of the 
axisymmetric rotator magnetosphere. Due to the stationarity and azimuthal 
symmetry of the magnetosphere, there are certain integrals of the motion of the 
plasma (Ardavan, 1976; Bogovalov, 1991). The conservation of the energy flux 
along the field lines is described by 

r + q(7) - F(v)q(v)xH, = w(Y?). ( 2 )  

Here r = (E + p ) y ,  E and p are the internal energy and plasma pressure per 
particle in mc2 units, y is the Lorentz factor, q ( r )  is Newton’s potential of 
gravitational field divided by c2, F = H p / 4 ~ m c h u p ,  where Hp is the poloidal field 
strength, n is the plasma density, m is the mass of the particles, up is the plasma 
velocity along the force lines of the poloidal field, x is the distance to the axis of 
rotation expressed in the units of the light cylinder radius, q(W) is the function 
which appears in the relationship E = q(Y)xH,  between the electric field E and 
the poloidal magnetic field Hp, H, is the azimuthal component of the magnetic 
field, Y? is the potential defining the poloidal field as 

1 gp = - [VY, Z,]. 
X 

(3) 

Y is constant along the force lines of the poloidal magnetic field. All the functions 
depending on Y? are also constant along the poloidal field lines. 

The conservation of the angular momentum flux is expressed by 

xu, - F(Y?)xH, = M(Y?). (4)  
u 
C 

Here U, =2r, where up is the azimuthal component of the velocity. The 

frozen in condition has the form 

xq(Y?)T + Uph = U,, ( 5 )  
where Up = (vp/c)T and h = H, /Hp .  The relativistic relationship between r, Up 
and U, is 

r2 = ( E  + p ) 2  + u; + u;. (6) 
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Equations (2), ( 5 ) ,  (6) and (7) govern the dynamics of adiabatic plasma in a given 
poloidal field. 

The equation for the potential W can be obtained from the flux conservation, 
across the field lines, for the energy-momentum tensor (Ardavan, 1979; Bogova- 
lov, 1991, 1992a). This equation has the form (Bogovalov, 1992b) 

x (UpHpxqo + U,(fiG))). (7) 

Here w = W - q(?), V = W - Mq, UA = 
(1 -x2q2)FH , UA is the AlfvCn velocity, E = (US/Up)', Us = ( E  +p)C, /  
v m !  C, is the sound velocity and T = (W);  + xH,(Fq)&. The symbol 
( )&, denotes the derivative with respect to Y and H is the total magnetic field. 

Later we consider the simplest case of a cold plasma ejection from the 
magnetosphere which has a monopole-like spherically symmetric configuration in 
the absence of rotation (Sakurai, 1985). We suppose that, when Q = 0, the flow is 
spherically symmetric and has the velocity U,. The gravitation is neglected. The 
function Y has the form 

U, = E (  Up - UA) + F(H2 - E2) /Hp ,  

where 8 is the polar angle and Yma, = 2H0R2 is the magnetic flux through the 
surface of the star. The magnetic field is given by 

Hp = Ho( 4)' (9) 

where Ho is the field at the star surface. The velocity is uniform throughout the 
flow. The AlfvCn surface is a sphere of the radius rA defined by 

UA = Uo= FHp(rA). (10) 
At the same time, the Alfven surface is the fast magnetosound surface. On this 
surface, the plasma flow becomes supersonic. It is convenient to write out Eq. (7) 
in the spherical system of coordinates. For a cold plasma without gravitation and 
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q = 1, it has the form 
a2v 1 a2Y { ( UpH: - ( H 2  - E')FHp) 3 + 2H H U - - FH; P r a 8 a r  

( U P  - U*) 

+- H;u'] - sin 8 He Up(H; + H f )  + 2E2FHp + - 
UP 

H V &  - -  
= -xH, 2WHz - ( H 2  - E2) (W& + xH,F&) - ( U H ) ]  . (11) 

Here He and H, are the spherical components of the magnetic field. 
Let us consider a slowly rotating star, so that rA << 1 (r, is normalized by the 

light cylinder radius). In this case rotation can be considered as a small 
perturbation. The problem can be solved by means of perturbation theory. 

From the system of Eqs. (2-6), it can be shown that the first-order term in the 
expansion of the azimuthal magnetic field in Q has the form (Bogovalov, 1992b) 

[ U P  

xw h =  -- 
uo ' 

where W = yo. It can be shown that the corresponding correction to Up is of the 
fourth order in Q. Therefore, below we assume that Up = Uo. The expansion of 
U, begins with the term proportional to Q3. Therefore, we assume below that 
u, = 0. 

Y can be presented in the form 

where f is the lowest nonvanishing perturbation of Y. After the linearization of 
Eq. ( l l ) ,  the following equation for f can be obtained: 

where 5 = r / rA.  The solution of this equation can be presented as 

Here y ( t )  is given by 

where 
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Pz and Q2 are the second-order Legendre functions of the first and second kind, 
respectively (Abramowitz and Stegun, 1964). 

Bogovalov (1992b) shows that the solution (15) is valid for 

This inequality implies that the present solution exists if rA < vo/c. This means 
that rotation can be considered slow when the velocity of the rigid rotation of the 
magnetosphere at the AlfvCn surface is smaller than the starting velocity of 
plasma, vo. 

The structure of the magnetosphere, as given by Eq. (15), is presented in 
Figure 1 for (1;1/U0)’ = 0.3. The deflection of the flow toward the axis of rotation 
due to the magnetic force of the spiraling field lines is seen clearly. Such effect has 
been discussed earlier by Sakurai (1985) for solar wind and Sulkanen and 
Lovelace (1990) for pulsars in the massless approximation. It is obvious that the 
compression of the force lines of the poloidal field toward the axis of rotation is a 
general phenomenon for rotating magnetized ortators ejecting plasma. It must 
exist at any angular velocity of rotation. We believe that such an effect of 
nonuniformity of the plasma flow ejected by a pulsar can play an important role 
in the interaction of the pulsar wind with the nebula. 

In conclusion, I would like to stress one important methodical result of the 

x - 
rib 

Figare 1 The structure of the poloidal field lines of slowly rotating axisymmetric rotator given by 
perturbation theory for (rA/U0)’ = 0.3. 
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present solution. When solving the problem of the structure of the magneto- 
sphere of an axisymmetric rotator, it is necessary to know the azimuthal magnetic 
field generated due to rotation. More than twenty years ago Weber and Davis 
(1969), investigating magnetohydrodynamics of the solar wind, proposed the 
hypothesis that the magnitude of the azimuthal magnetic field is determined by 
the critical condition at the fast magnetosound point. They did not investigate Eq. 
(7). But this equation has a singularity on the AlfvCn surface. On this surface, the 
left-hand side of Eq. (7) vanishes. The present solution shows that rotation 
generates such azimuthal magnetic field that the right-hand side of Eq. (7) also 
vanishes. In other words, the magnitude of the azimuthal magnetic field is not 
determined by the critical condition as Weber and Davis (1969) supposed. It is 
defined by the condition of regularity of the equation on the Alfvin surface. For 
a general case, this result was discussed by Bogovalov (1992a). 
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