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ON SAMPLING WITH ACCOUNT OF NOISE 

V. YU. TEREBIZH 

Crimean Station of Sternberg Astronomical Institute, 334413 Nauchny, Crimea 

(12 March, 1992) 

The optimum pixel size E of a detector under given observational conditions depends on a priori 
information about the object in focus, the Poinr Spread Function (PSF), the signal-to-noise ratio, etc. 
The Rayleigh criterion, according to which the theoretically attainable resolution is of the order of the 
PSF width A, leads to the generally accepted value of E = A/2. It is shown that this conventional 
approach does not take into account important information concerning the image smoothing. Image 
restoration technique allows to reach much higher resolving power under typical conditions of 
observations, so that much smaller pixel sue  should be chosen to provide the theoretically attainable 
resolving power. Unmatched telescope and detector have significant losses in the resolving power and 
limiting magnitude. The formulae are given for approximate calculation of the corresponding 
parameters. As an example, the problem of the resolving power of the Hubble Space Telescope is 
discussed. 

KEY WORDS Data processing, image restoration 

1. INTRODUCTION 

The problem under consideration can be formulated in qualitative terms as 
follows: what is the optimum pixel size E (in projection to the sky if astronomical 
context is considered) to be used to record an image carrying both the noise due 
to quantum nature of light and an additive noise due to the sky background and 
the dark current of the detector? It is clear that an adequate choice of E can be 
reached by a compromise between the necessity to ensure high spatial resolution 
and, at the same time, to avoid an excessively detailed representation of the data, 
not corresponding to available information. Of course, the final decision depends 
also on the field of view of the optical system employed, its permissible 
dimensions and other factors, but, unlike the relation between the pixel size and 
resolving power, all these restrictions can be easily understood, so they are not 
considered here. 

In nontrivial case, an imaging system smooths fine details of the original image, 
thus the intrinsic width A of a point source image constructed by a given system is 
of primary importance. According to the accepted terminology, we interpret the 
point source image, normalized by unit flux, as the Point Spread Function (PSF). 

Thus, we are dealing with three typical dimensions (Figure 1): the width of the 
PSF A, the detector pixel size E, and the resolving power pE, which, for any 
correctly designed system (telescope, camera, spectrograph, etc.), should be 
mutually consistent and adjusted to the object under consideration and noise 
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Figure 1 Schematic representation of the Point Spread Function width A and detector pixel size E. 

properties. The consistency problem is not of a theoretical interest only: we shall 
see below that intrinsic losses due to incorrect adjustment reach as much as 
several stellar magnitudes for the limiting brightness at fixed resolving power, or 
a few orders of magnitude in the resolving power at fixed flux. 

These problems can be illustrated using an analogy with time series analysis 
(Terebizh, 1992a). Let us assume that the series counts correspond to observa- 
tions with certain exposure time. Assume further that there is an advanced 
method to search for a periodicity of the investigated process hidden in 
fluctuations. Evidently, if the period is P, we must obtain the data with 
sufficiently short time exposures, at least not exceeding P/2.  In the opposite case, 
the shortest detectable period is determined not by the physical nature of the 
process or the efficiency of the applied data analysis technique, but simply by the 
roughness of the monitoring system. 

Therefore, a reasonable sampling rate of a signal in time or space is de$ned by 
the highest corresponding temporal or spatial signal frequency which can be 
revealed in a noisy data. Unlike the case of stochastic processes, searching for this 
cutoff frequency for deterministic functions is quite a simple problem. Just for this 
reason the optimum sampling in the presence of noise is to a great extent 
different from that following from the “standard” rule based on the well-known 
sampling theorem by Whittaker-Kotelnikov-Shannon (see, for example, Jain, 
1989). 

The aim of this paper is to discuss the relevant problems and to find useful 
approximate expressions for the optimum pixel size for a wide class of 
observational conditions. In particular, a simple relation = 
(Signal/Noise)1’2 follows from recent results of image restoration theory. The 
Hubble Space Telescope (HST) resolution power is discussed as an example of 
application of derived expressions. 
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2. GENERAL CONSIDERATION 

2.1. Image Space 

Since our final results are insensitive to the dimension of an image, we restrict 
ourselves to one-dimensional case. Let us consider, for the sake of simplicity, the 
resolving power in Rayleigh sense, i.e., as a problem of revealing the structure of 
a blurred double source with the pointlike components having about the same 
brightness. The detection of photo-events is a random process inevitably, so both 
the smoothed image and additive noise are assumed to have stochastic nature. 
Obviously, the smallest attainable separation pE of the components depends on 
the PSF form, pixel size, additive noise characteristics and the chosen significance 
level q of the decision. At a first approximation we may consider the resolving 
power p E ( A ,  v, q )  as a function of the PSF width A, signal-to-noise ratio v, and 
q. Our purpose is to estimate the number of pixels that cover the PSF width, that 
is 

A r=-  
E ’  

for, in some definite sense, optimum sampling. 
It is noteworthy, that the “resolving power,” whatever this term means, 

strongly depends on a priori information, defining, as a result, a pixel size. The 
role of a priori information has been underestimated by many authors, which 
leads to a number of paradoxes. Toraldo di Francia (1955) phrased that in a 
perfect way: “The observer is always more or less relying on his past experience 
of what a real object can look like. Moreover, in the great majority of particular 
cases, he has at his disposal a much larger amount of a priori information about 
the object than he even realizes. This information, if properly utilized, enables 
him to rule out some of the different objects which could correspond to the 
image. He thus may have the illusion that he can extract from the image more 
information than there is actually contained.” 

Thus, it is extremely important to identify a priori information and to include it 
into an image restoration procedure. Consider, as the simplest example, 
determination of the position of a single blurred object. The object’s shape and 
brightness S, as well as the total background flux B are assumed to be known. For 
the Poisson statistics of events (Mehta, 1970; Loudon, 1973) we can define the 
signal-to-noise ratio as 

It can be easily shown (see Appendix) that for such a large amount of a priori 
information even two rough pixels are enough to determine the position of the 
object with high accuracy: 

(3) 
1 

S dev @/A)  = - 
2v’ 
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where S dev denotes the root-mean-square deviation of the estimate f i /A of the 
relative shift from the true position of the object. It follows from (3) that the 
position of the bright object can be determined with an infinite accuracy 
independently of its width and number of pixels, and this is, of course, a 
consequence of the almost complete a priori information. 

Consider a more complicated situation, when two different objects, a single 
pointlike source and a double one with pointlike components at the angular 
separation p, are the only possibilities. We have to decide, on the basis of the 
randomly smoothed and noised image, about the type of the initial object. Just 
this case was considered to formulate the known Rayleigh (1964, p. 420) rule: the 
smallest detectable separation pr of the components is approximately equal to the 
PSF width A (we avoid some “pathological” shapes of the PSF with a few 
components like that for the Hubble Space Telescope). On the other hand, in 
order to distinguish two pointlike components we must have at least one empty 
pixel between their positions. Therefore, the pixel size E should satisfy the 
following inequality: 

Substituting here pjR) = A, we obtain: 

Therefore, according to the conventional approach, only two pixels are 
sufficient to cover the PSF width in order to transfer all the information that the 
image contains. Sometimes, when particularly accurate measurements are to be 
obtained, the I?-factor is several times as high. 

We stress again that ( 5 )  follows from the estimate p r  = A for the theoretical 
limit of resolution. Meanwhile, it has been known since the 1940-ies that the 
attainable values of p r  are considerably smaller than the PSF width. The first 
investigations of this superresolution phenomenon have been made by Schelkunoff 
(1943), Bouwkamp and De Bruijn (1946), Toraldo di Francia (1952, 1953, 1955), 
Wolter (1961), J .  Harris (1964a, b), Frieden (1967), Rushforth and R. Harris 
(1968); recently, the superresolution natural limit has been established and its 
strict form has been given (Terebizh, 1991, 1992b; Terebizh and Biryukov, 1991). 

Let us explain the nature of the superresolution phenomenon using an abstract 
example, when neither additive (which is a rough approximation to reality) nor 
quantum (which is definitely true) components of noise are present. Figure 2 
shows two absolutely smooth diffraction images, shifted one versus another by 
some distance p. Evidently, even if the shift p is extremely small relative to A, it 
is always possible to find out whether the overall picture corresponds to a binary 
or to a single source. Moreover, we could know nothing about the shape of the 
compared objects, but it turns out that if the noise were absolutely absent, the 
only necessary condition for exact image restoration is the finite size of the 
object. 

In real conditions, when both types of noise are present, the resolving power is 
finite, though the values of pr significantly lower than the PSF width are still 
attainable. It seems reasonable to expect that the limiting resolving power is 
determined not only by the PSF width but also by the signal-to-noise ratio and the 
required significance level of image classification. Let a be the probability to 
classify erroneously a single source as a double one, and /3 the probability to do 
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Figure 2 Detection of the shift p << A for absolutely smooth images. 

an error of the opposite sense (Cramer, 1946; Kendall and Stuart, 1969). As it 
has been shown recently (Terebizh, 1990c, 1992b), the closest binary source 
which can be distinguished from a single source at a given significance level has 
the following separation pr of the components: 

where the signal-to-noise ratio is 

S 

q m ’  3 =  (7) 

b (events/pixel) is the density of background events, ze is a root of equation 
@(ze)  = 1 - 8, function @ ( z )  is the Gaussian probability function (A.12), and the 
constant of the order of unity depends on the particular form of the PSF. For (Y 

and p within the range 0.02 - 0.10 (see Table l),  we may approximately write 

The [pr - 31 relation is shown schematically in Figure 3. Again pt+O when ++ m, but now the resolution is inversely proportional to the square root of the 
signal-to-noise ratio. Of course, to calculate accurately the theoretical resolution 
pr, an exact form of the corresponding expression should be used (Terebizh, 
1992b), but our purpose here is only to outline the arguments. 

The next step is to introduce the finite pixel size. It can be suggested that for 
any given object, noise, PSF and pixel size the limiting resolution is 
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Table 1 The z,-function 

e zfl e 2, 

0.01 2.326 0.30 0.524 
0.05 1.645 0.35 0.385 
0.10 1.282 0.40 0.253 
0.15 1.036 0.45 0.126 
0.20 0.842 0.50 0.OOO 
0.25 0.674 

Indeed, let us imagine first that we have very fine pixel 5.ucture with E << pr .  In 
this case the resolution does not depend on E and is equal to the theoretically 
attainable value pt. In the opposite case, when &>>pr, the resolution is 
determined simply by the pixel size. Therefore, if we are interested only in 
obtaining the highest resolving power for given object and imaging system, we 
should choose the optimum pixel size according to the following relation: 

&opt = PJ2 .  

From Eqs (8) and (10) we obtain: 

- 3  t 
0 I 2 3 4 

Figure 3 Theoretically minimum resolution p, as a function of signal-to-noise ratio for the choice of 
objects (solid line) and results of numerical simulations for non-negativity as the only a priori 
information (vertical bars). 
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ON SAMPLING WITH ACCOUNT OF NOISE 257 

Thus, for the approximate approach under consideration, the optimum r-factor 
depends only on the signal-to-noise ratio. The latter is given by Eq. (7) for 
one-dimensional images; in a general case, it should be written as 

where S is the mean value of integrated number of counts during exposure time 
caused by the investigated source, and So is the similar value in the absence of the 
object. 

Strictly speaking, Eq. (11) is valid only when the probabilities of the first and 
second type errors a and B are equal to 0.05 and 0.10, respectively. For arbitrary 
significance level, it follows from (6) and (10): 

The values of the 2,-function are given in Table 1. Note again that exact 
equations with allowance for the PSF form are to be used for accurate 
calculations. 

According to Eq. ( l l ) ,  rather large number of pixels, of the order of 
r = 10-100, should cover the PSF width for the conditions typical of astronomical 
observations if we want to reach the highest theoretical resolving power. More 
extensive discussion of this case is given in Section 3. 

We have discussed above two imaginary situations when a priori information 
was quite extensive. Such cases are not rare in astronomical practice, but 
investigations in situations, when the only known information about the object is 
its non-negativity (since any image is an energy distribution) are much more 
frequent. As an example, we can consider the problem of star/galaxy separation 
in faint object surveys, on the one hand, and investigations of the structure of 
active galactic nuclei, on the other hand. How the resolving power would degrade 
in the general case, when the non-negativity is the only additional available 
information about the object? Using numerical simulations, Terebizh (1992b) has 
shown that, when the most efficient (theoretically) method for image restoration 
is used, the resolving power does not affect strongly the threshold given above (it 
was suggested that the sampling does not introduce restrictions). The resolution 
for a binary pointlike source the absence of any a priori information, except the 
non-negativity, is shown by vertical lines in Figure 3. 

Thus, in the case of scarce a priori information one can assume that the 
r-factor is smaller than implied by Eq. ( l l ) ,  although the difference is not very 
large. Taking into account that advanced, expensive devices are usually employed 
to solve such problems through obtaining extensive a priori information, it is 
worth to consider the sampling rate basing on the relations discussed above. 

2.2. Frequency Space 

An equivalent and generally complementary approach to sampling is associated 
with the analysis of the frequency space (for the sake of simplicity, we shall 
consider angular frequencies with dimension l/radian). 
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I I m a g e  , Restored o t j t c t  

Figure 4 Schematic representation of power spectra. 

Let fob  be the largest frequency in the spectrum of the object (so that f ;: is the 
angular size of the smallest detail). Schematically, the power spectrum is shown in 
Figure 4. Smoothing by a linear imaging system is described by the multiplication 
of the spectrum by the Modulation Transfer Function (MTF). It is known, (see, 
e.g., Born and Wolf, 1964) that the MTF of any optical system is strictly equal to 
zero for frequencies exceeding some critical value fc (for a telescope with the 
aperture diameter D, in an ideal case we have fc-D/A).  Thus, the observed 
image of the object contains only frequencies below 5. A similar result is valid for 
non-linear systems as well. 

Further, according to a widely known theorem by Whittaker-Kotelnikov- 
Shannon (see Shannon, 1948), to obtain an exact representation of a continuous 
function whose spectrum vanishes at frequencies above some fm,,, it is sufficient 
to have sampling at the step 

This means simply that the smallest detail should be covered by at least two 
counts. How to define fmax? If we accepted that fma, =fob,  the step would be very 
small, being adequate for the original object but not its blurred image. Following 
a conventional approach, we should adopt fma, =A - A-', which yields the 
Rayleigh solution (5 ) .  

The conclusion that the observed image spectrum does not contain frequencies 
exceeding the cutoff frequency5 is correct in the most strict sense, but in fact we 
have at our disposal not only the image spectrum but also the information about 
the way how the degradation of the spectrum was obtained, i.e., we know the PSF 
and its Fourier transform (MTF) (of course, some other a priori information may 
be also available). If noise were absent completely, this information would be 
sufficient to restore the whole spectrum up to fob. However noise is inevitable (at 
least the photon noise), so the spectrum restoration is feasible up to certain 
frequency fr (<fob) determined by the available information, signal-to-noise ratio 
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and other parameters (see Figure 4). In fact fr = p;* and fc = A-’, so that 

Since usually p, << A (Figure 3), we obtain fr >>fc, i.e., the details considerably 
smaller than the PSF width can be restored. The corresponding value of the 
optimum sampling step can be derived from (14) for fma=fr-p;l to be 
coinciding with the above expressions. 

2.3. Some Additional Remarks 

In order not to complicate the problem but at the same time to investigate the 
role of individual parameters, we neglected some effects of secondary impor- 
tance. Particularly, the upper limit for fob was not considered. Meanwhile, a 
possibility to study the superresolution phenomenon depends also on the shape of 
the object as well. In addition, advanced methods of flux measurement by CCD 
detectors assume flux integration within pixels which are separated by sig- 
nificantly smaller space than their proper dimension. This averaging effect 
represents a problem different from the sampling procedure of the functions at 
widely separated moments of time. Moreover, in a consistent theory both 
mentioned effects are to be considered simultaneously. 

A more general analysis of the sampling problem, including the factors 
mentioned above, will be published elsewhere. We only outline here the main 
features of the corresponding effects. 

Consider object’s power spectrum before its degradation by an imaging system. 
If the object had deterministic nature and an additive noise were absolutely 
absent, the typical power spectrum would be decreasing gradulally from low 
spatial frequencies up to very high ones. Introducing an additive white noise not 
only adds a constant power density, but inevitably introduces large fluctuations of 
the power density at close frequencies. It was shown almost a century ago by 
Arthur Schuster (1898) that the probability density distribution of the sampling 
white noise power spectrum is an exponential function (that decreases slower than 
the Gaussian distribution), and the neighbouring values of the sampling spectrum 
at the separation of the order of the reciprocal of the image width are 
uncorrelated. This implies that very large fluctuations of the power density are 
expected to be typical, and this phenomenon is familiar to anybody who deals 
with Fourier representation of observational data. 

Another source of the power spectrum fluctuations is the quantum nature of 
light. This inevitable photon noise has the mean level equal to the total flux of the 
object, and the same exponential distribution as the additive noise. A combined 
action of the two types of noise “hides” those parts of the original spectrum 
which have low power, usually those in the high-frequency domain. Thus emerges 
the concept of noise-limited spectra. 

An example of this phenomenon is shown in Figure 5 ,  where the power spectra 
of a randomized Gaussian object and the Poisson background are given. The 
integral flux, standard deviation and the total width of the object have been 
chosen to be S = lo3 counts, LT = 20 pixels and N = 256 pixels, respectively; the 
background level is b = 5 counts per pixel. The frequency is j = f /Af, where the 
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Figure 5 The power spectra for deterministic Gaussian object (thick line), background (dotted line), 
and four random simulations of the noisy Gaussian object. 

frequency step is Af = ( N  Ax)-1. We see that at some critical frequency fr), 
dependent on the chosen significance level, fluctuations are so high that it is 
impossible to decide whether or not a high-frequency domain is present in the 
object's spectrum. 

This assertion allows to consider quantitatively the problem of the noise limit in 
power spectra. Indeed, we can compare two objects: the real one and the same 
object but with a high-frequency power spectrum cut-off for f>f* (that is, 
smoothed by sinc-filter). If these objects are statistically different at some adopted 
significance level (for the probabilities of the first and second type errors a and 
p), the frequency f* should be considered as accessible in the spectrum of the 
object, and the corresponding spatial details can be revealed. In the opposite 
case, when the compared objects are indistinguishable, we should consider f* 
(q, a, p)  as the limiting frequency due to noise. The corresponding theory of the 
recognition of stochastic objects has been recently developed by Terebizh (1990c, 
1992b). Application of this theory to the problem considered gives strict but 
rather complicated results that we will describe elsewhere. Let us consider here 
only a numerical example. 

Figure 6 shows the relation between the noise-limit frequency fko) (in units of 
o-') and the signal-to-noise ratio for the random Gaussian discussed above object 
in the presence of an additive noise. We see, as it can be expected, that the 
critical frequency slowly increases with the signal-to-noise ratio. 

To allow for the smoothing effect due to the finite pixel size E, the power 
density should be multiplied by sinc2(&f). This has zeros at f = &-I, 2 C 1 ,  . . . , so 
the noise-limit frequency fn( E )  is somewhat smaller than the corresponding 
frequency fro) for E = 0. On the other hand, the averaging over a finite pixel 
affects the statistics of the counts (the sampling variance decreases), and the 
resulting dependence fn(&) looks like shown in Figure 7. 

These questions deserve a detailed numerical investigation. 
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Figure 6 Relation between the noise-limit frequency fro) and signal-to-noise ratio for Gaussian 
stochastic object; (Y = 0.10, /3 = 0.05 (a), (Y = /3 = 0.20 (b), (Y = /3 = 0.30 (c). 

3. SAMPLING FOR THE HUBBLE SPACE TELESCOPE 

The discussion of this section is restricted to those aspects of the problem which 
illustrate the above approach in a most clear way, so much more extensive 
calculations including many additional factors (like stray light, the exact values of 
the bandwidth and dark current, etc.) are to be performed to obtain accurate 
results. 

Let us consider the Faint Object Camera (FOC) of the HST. Assume A to be 
the radius of the first dark diffraction circle in the pointlike source image (Figure 
1). For the monochromatic flux at wavelength A, we have A = 1.22A/D, where D 
is the aperture diameter. For A given in Angstroms, D, in mm and A, in arcsec, 
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and A = 0.058 for the HST ( D  = 2400 mm) at A = 5556 A. Let E,, to be the pixel 
size in micrometers. Then we obtain, in arcsec: 

E” = 206.265 %, 
Fmm 

where F,, is the equivalent focal length. Then the r-factor (1) for an image 
diffraction-limited at wavelength A is 

rd = 1.22 x (F/D)AA/&,,. (18) 
Here F / D  is the relative focal length of the telescope or the complete optical 
system including the telescope and spectrograph. Relation (18) allows us to 
estimate some parameters after adopting the other, usually the FID ratio given 
the detector, wavelength and resolving power. 

Five columns of Table 2 give, respectively, the F / D  ratio, focal length F, field 
of view 2 w, pixel size E and diffraction r-factor for the tbree modes of the FOC 
at 512 x 512 pixels format. We have adopted A = 5556 A and E = 25 pm (Mac- 
chetto, 1982). 

As one can see from Table 2, the FOC was designed according to the Rayleigh 
point of view, so it was supposed to cover the diffraction PSF by a couple of 
pixels. The f /288 facility has been provided to exploit the conventional resolution 
power at shorter wavelengths (r, = 1.8 at A = 1250 A). Such a choice was quite 
natural at the time of designing the HST project because the image restoration 
techniques needs significant additional efforts and extremely powerful computers 
but these problems seem to be not very restrictive for the modern and, all the 
more, future projects. 

It is known that the real radius of the point source image obtained by the HST 
at 84% level is =1.6”, that is approximately 30 times as large as the diffraction 
radius. The corresponding values of the r-factor are given in the last column of 
Table 2. At the same time, it should be stressed that the situation with the HST 
point spread function is more complicated since the PSF can be presented as a 
sum of two completely different components: a sharp central core of diameter 
0.25” containing 15% of the light, and very broad “wings.” It was noted by White 
and Burrows (1990) on this occasion, that “the fundamental loss of HST imaging 
science as a result of the spherical aberration is not a loss of resolution; rather, it 
is a loss of the ability to detect faint objects, especially in crowded fields.” This 

Table 2 The faint object camera modes of the HST 

Focal Focal Field Pixel r d  r 
ratio length of view size 

( m )  (arcsec) (arcsec) 

48 115.2 22.5 0.044 1.3 36 
96 230.4 11.2 0.022 2.6 73 

288 691.2 3.8 0.0075 7.8 213 
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Figure 8 The resolution-magnitude relation for f/96 FOC HST images under the conditions specified 
in Table 3. Thick lines correspond to the theoretical limit for the supposed (a) and real (b) HST optics 
wavy line corresponds to the Rayleigh law and dashed line shows the resolution limit due to the pixel 
size. The shaded area is accessible for the actual HST optics. The symbols "IR' indicate the image 
restoration techniques abilities. 

statement shows the essence of the problem in a quite correct manner, but if we 
want to describe the situation more accurately, some loss of resolution power 
should be accounted as well. 

As an example, the abilities of the FOC direct imaging in the f/96 mode are 
shown in Figure 8. The parameters from Table 3 were adopted for the 
calculations of the resolving power (Terebizh, 1992b). The PSF characteristics 
refer to the one-dimensional representation of the FOC images. The monochro- 

Table 3 Adopted parameters for illustrative observations with the 
FOC HST 

Central wavelength 
Bandpass 
Sky background 
Stray light 
Exposure time 
PSF core component radius 
PSF diffuse component radius 
PSF core component fraction 
Overall quantum efficiency 
Pixel size 
Dark current 
Significance levels 

5000 A 
100 A 
23 map/square arcsec 
27 mag/square arcsec 
loo0 s 
0.157 arcsec 
1.5 arcsec 
1.0 and 0.23 
0.02 events/photon 
25 micrometers 
5 . 1 0 - ~  events/s pixel 
c u = O . l O ,  B=0.05  
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matic stellar magnitude has been defined as 

m, = -21.10 - 2.5 . lgfn (erg/s cm2 A). (19) 

First of all, it can be seen from Figure 8 that the theoretical resolving power of 
the real HST is approximately 3 times worse than that for the supposed optics for 
m, < 22". For the object magnitude in the 22"-25" range, the losses are infinite. 
Rather moderate losses of the resolving power in the bright domain are caused 
mostly by the existence of a sharp core in the HST PSF. If there were no such a 
sharp detail, the losses would be more than one order of magnitude. 

The second important note concerns the absolute value of the resolving power. 
We see that pr -- 0.01" were attainable with the supposed optics for the objects of 
m, = 15", and higher resolving power for brighter objects. Nevertheless, the 
theoretical resolving power of the actual HST optics remains quite high. For the 
conditions considered, it follows from (9) that for the objects brighter than the 
critical magnitude my)  = 17.5" the resolving power is restricted simply by the 
pixel size, E -25 mcm rather than by signal-to-noise ratio (for the supposed 
optics, the critical magnitude is -20.5"). 

Let us discuss, finally, the abilities of image restoration techniques. Evidently, 
the gain of resolving power corresponds to the transition from the Rayleigh 
criterion to the p,-limit (the shaded area border). It can be seen from Figure 8 
that the most efficient image restoration technique can improve the resolution 
only by a factor of about five for the objects brighter than my).  If the focal ratio 
were greater, the gain could be more significant. For the present situation, we can 
shift the critical point m y )  to the faint magnitudes region by increasing the 
exposure time and/or spectral bandpass, and also by using other ways to increase 
the signal-to-noise ratio. 

Similar diagrams can be calculated for various observational conditions, but it 
is appropriate to specify them for a special discussion of the HST abilities. We 
consider here only the example of restoration of the HST image. 

The upper part of Figure 9 shows the Supernova 1987A region as seen by the 
FOC HST; the lower panel demonstrates the image processed using the 
Maximum Likelihood Image Restoration (MLIR) method (Terebizh, 1990a, b, c; 
1991). The restoration was carried out by Terebizh and Biryukov (1992). 
Unfortunately, it is just the existing optics of the HST (where the PSF width is 
covered by dozens or hundreds of pixels) that allows to demonstrate the effect of 
superresolution in practice. According to the Rayleigh criterion one cannot expect 
to reach the resolving power drastically different from the PSF core width, 
=0.20arcsec. However, the restored images shown in Figure 9 reveal details as 
small as -0.03-0.04arcsec, i.e., of the order of pixel size. It is noteworthy that 
the nearest star to the Supernova (Star 3 of Jakobsen et al., 1991) appeared to be 
a binary, with the component separation -0.06" and the intensity contrast of 32 
times. The Supernova itself reveals the arc millisecond structure with the 
pointlike central source and surrounding envelope, consisting of the material 
ejected during the outburst at the velocity =lo4 km/s. 

As one can see from Figure 8, the resolution power provided by the MLIR for 
the Star 3 (mh = 15.6) and Supernova (mA = 17.0) attains the limit caused by the 
finite pixel size. 
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Figure 9 The Supernova 1987A as seen by HST (a), a part of the restored image including 
Supernova and Star 3 (b), and the intensity distribution within the restored Supernova image (c). 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
09

:2
0 

19
 D

ec
em

be
r 2

00
7 

266 V. YU TEREBIZH 

4. CONCLUDING REMARKS 

The general inference from the above discussion is that the image restoration 
abilities should be taken into account when astronomical and similar projects are 
being designed. In astronomy, the easiest way to obtain a self-consistent device is 
connected with the adjustment of the equivalent focal length F. At the same time, 
the adjustment of F to improve the resolution power should correspond, in one’s 
turn, to the detector characteristics. For example, at very large values of F the 
reading noise of CCD devices becomes the dominant factor in the limiting 
magnitude. So, all aspects of any experiment should be considered consistently 
and simultaneously. 

It should be stressed that almost any image, even the one obtained in a 
non-consistent way, contains much more information than can be anticipated by 
such a powerful system as human “eye + brain.” A fine structure of an object can 
be revealed by proper restoration, and this should not introduce any subjective 
motives which are usual for widespread methods of restoration. The correspond- 
ing method-independent approach has been proposed by Terebizh (1990a, 1991). 

For the sake of simplicity, our discussion has been restricted to the case of 
direct imaging. Of course, similar considerations are valid for spectral measure- 
ments, where the gain in resolving power is no less significant than for direct 
imaging. The spectroscopy has evident specific features, caused by limitations in 
the exposure time, spectral range width, etc. 

As usually, it seems quite natural that the optimum solution combining high 
resolving power with a large field of view and faint limiting magnitude can be 
obtained for several modes of the optical system through introducing auxiliary 
optical elements. The only, but important, change to the conventional approach 
is connected with the allowance for the possibilities of image restoration 
techniques. 
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APPENDIX 

ESTIMATES OF POSITION AND BRIGHTNESS FOR A BLURRED 
SOURCE 

The problem considered below is so typical for astronomy that, perhaps, it was 
analyzed earlier. Nevertheless, in view of importance of the result, it is worth to 
discuss the problem once more in the framework of a simple version of the image 
restoration approach. 

Let us assume that a pointlike source of intensity S is located near the origin of 
a coordinate system. Since the final expressions are independent of the number of 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
09

:2
0 

19
 D

ec
em

be
r 2

00
7 

ON SAMPLING WITH ACCOUNT OF NOISE 267 

dimensions, consider a one-dimensional case. Let p be the unknown true position 
of the source. It is supposed further that the pointlike object is blurred 
stochastically, so that each photo-event S is distributed randomly and independ- 
ently of other ones, with some probability h(x - p )  dx, over the interval 
[x ,  x + dr] around the initial position p. The detector has only two large pixels: 
one from -m to 0, and the other from 0 to +m, and there is additional Poisson 
noise due to the detector dark current or/and sky background with the mean 
value of b events per pixel. 

The Point Spread Function h ( x )  is assumed to be known, as well as the 
intensity of the object S and mean intensity of the additive noise 6. Thus, the 
observer has only two random counts Nl and N, of the events for the left and 
right pixels correspondingly. One should obtain an estimate of the true object 
position, P ,  on the basis of the set of numbers (Nl, N,) and the aforementioned a 
priori information. 

In the most general formulation of the problem we know nothing about the 
source except its intensity S 2 0. This case is considered in this Appendix, but first 
we discuss a simpler case, when additional a priori information is available 
concerning the source nature. Namely, it is supposed, that the total number of 
counts due to the emission from the source is the Poisson random variable with 
the known S mean value. This is just the case for usual observational conditions 
for a non-coherent object, and strictly valid for the one-mode laser radiation 
(Mehta, 1970; Loudon, 1973). As discussed by Terebizh et al. (1991), the 
numbers of counts for the left and right pixels are then independent Poisson 
variables with mean values ( Cl)  = S . p ( p )  + b and ( p,) = S * [l - p ( p ) ]  + b, 
respectively. Here p ( p )  is the probability of occurrence of a count in the left 
pixel, which can be written in terms of the PSF in the following way: 

The probability of occurrence of Nl counts in the left pixel and N2 counts in the 
right one under given shift p is 

[S(1 - p )  + b)" . exp [-S(l - p )  - b]  
N,! 

The desired maximum likelihood estimate j3(Nl, N2) is the root of the following 
equation: 

or 

The solution of this equation for known PSF shape gives a concrete expression for 
P .  
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Let us consider the simplest case when the PSF has a rectangular shape of the 
width A .  Then p ( p )  = 1/2 - p/A, and we have from (A4): 

A 2  

Taking into account the Poisson nature of random variables Nl and N2,  it is easy 
to find for the mean value (j3) -- p, i.e., the estimate j3 is unbiased, and for the 
standard deviation we have 

1 S 
S dev @/A) =- T+9 = 

2v’ v m -  
Here T+9 should be considered as the signal-to-noise ratio, so, we come to Eqs ( 2 )  
and (3). A similar result with slightly different proportionality coefficient is valid 
for other PSF forms. 

In a general case, when only the intensity S of the pointlike source is known, 
the probability f ( N l ,  N2 I p )  to obtain given numbers of counts is equal to 

N I  

f V 1 ’  N2 I P )  = c G p k ( l  
k=S-NZ 

where Nl + N2 - S L 0, and we consider the most interesting case when Nl and N2 
do not exceed S. Since p<<A, the probability p ( p )  is close to 1/2, and the 
binomial probability density including p ( p )  in (A7) has a maximum near k = S/2. 
On the other hand, factor the [ ( N l  - k)! . (N2 - S + k ) ! ] - ’  has very sharp 
maximum at k , ,= (S+  N l -  N2) /2 ,  which is close to S/2 as well, so it is 
permissible to retain in (A7) only the term corresponding to k,,,. Therefore, the 
probability f is approximately 

(A81 f ( N l ,  N2 I p )  = const -p(s+N1-Nz)’2 . (1 - P ) ( S - - N ~ + N ~ ) / 2  

As follows from Eqs. (A3) and (A8), the maximum likelihood estimate j3 is the 
root of the equation 

Now, for 
somewhat 

rectangular shape of PSF of the width A, we obtain an expression 
different from (A5): 

but, according to (AlO), the standard deviation of j3 is again given by (A6). 
The variance of the maximum likelihood estimate of the pointlike source 

position is a useful characteristic of the position accuracy, but more informative is 
the least possible shift of the source pt at the accepted significance levels a! and p 
(see Section 2). The corresponding general analysis has been carried out by 
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Terebizh (1990~; 1992b). As follows from Eq. (28) in Terebizh (1990~) for n = 2, 

where z, is the root of Eq. @(z) = 1 - 8, and @(z) is the Gaussian distribution 
function: 

@ ( z )  = 2- exp ( - t 2 / 2 )  dt. qzi -m 

As follows from (All) ,  the limiting, at the given significance level, shift of the 
source is inversely proportional to I). According to Eqs. (A6), (A l l )  and Table 
1, the standard deviation of 6 corresponds approximately to (Y = p = 0.35. 

Equation (A6) i2valid even when both the object intensity S and its position p 
are unknown. To S and 6, estimate one should maximize (A2) with respect to S 
and p simultaneously. The corresponding estimates are: 

S = NI + N2 - 2b, 

The standard deviation of s/S is evidently equal to 

S dev ( S / S )  = V-' ,  
while that for D/A remains to be approximately equal to (2V)-' when 
signal-to-noise ratio V is large enough. Note that all the above estimates can be 
considered, in a first approximation, as unbiased. 

The above estimates provide a reasonable approximation for any shape of the 
object and any number of pixels. 
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155. 

NOTE ADDED IN PROOF 

Since an initial “object” is, in our determination, the set of mean pixel intensities 
for an ideal imaging system, it should be considered as deterministic function. 
Therefore, strictly speaking, we should say “a random object estimate for an 
ideal imaging system” instead of more simple term “a stochastic object”, which is 
used in the text. 


