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INTERACTION OF GALAXIES AND ACTIVITY 
PROBLEM 

A. V. KATS’ and V. M. KONTOROVICH* 

‘310078 Kharkov, Dzerjinskaya Str. 40, Kharkov State Institute of Metrology 
z310002 Kharkov, Krasnoznamennaya Str. 4, Institute of Radio Astronomy, 

Academy of Sciences of the Ukranian SSR 

(16August 1991) 

In this brief review we regard the activity of galaxies as a result of their interacti0n.t One of the main 
mechanisms of galaxy activity seems to be compensation of momentum under the coalescence of spiral 
galaxies. As a result, some part of the disk gets an opportunity to fall to the nucleus. 

On this occasion the mass and momentum distribution is obtained as a solution of a generalized 
Smoluchowsky kinetic equation (KE) describing the coalescence of galaxies. The luminosity function 
of active galaxy nuclei is calculated on the assumption that activity is governed by accretion during the 
merging of spiral galaxies. 

KEY WORDS Galaxies, interaction, activity, kinetic equation, angular momentum, luninosity 
function. 

1. INTRODUCTION 

“The past decade has brought much new evidence that galaxies do not evolve in 
splendid isolation, but instead interact with each other. Collisions among them 
are more frequent than one would expect. . .” This is a quotation from the first of 
two invited talks on the theme “Interacting Galaxies” on the 173rd meeting of the 
American Astronomical Society in January 1989 (Schweizer, 1988; Toomre, 
1988). The galactic nuclei activity leading to the phenomena of Seifert galaxies, 
radiogalaxies and quasars depending on their activity scale is closely connected 
with their interactions (see reviews by Balik and Heckman, 1982; Heckman, 
1989, for example, see also the list of phenomena and references in Fuentes- 
Williams and Stoke, 1988). 

In recent years definite confirmation has been received (Toomre, 1977) of the 
point of view that the activity is connected with accretion due to angular 
momentum compensation when spiral systems merge. Several arguments were 
given by Komberg (1984, 1989) in favour of the fact that quasars are objects of 
the second generation formed due to coagulation of less massive objects. In 
accordance with data from Hutching’s (1983) review, nearly 30% of galaxies 
belonging to quasars (i.e. to their nuclei) are in a state of interaction (collision) 

f In this text in contrast to the report at the conference we omit the arguments (based on 
observations) in favour of the significant role of galaxy interactions in their activity, addressing readers 
to the cited reviews. 

183 



D
ow

nl
oa

de
d 

B
y:

 [B
oc

hk
ar

ev
, N

.] 
A

t: 
05

:3
9 

19
 D

ec
em

be
r 2

00
7 

184 A. V. KATS AND V. M. KONTOROVICH 

with a neighbouring galaxy. Pictures of the brightest infrared sources in the IRAS 
catalogue illustrate a phase of merging of all objects (Sanders, Soifer et al., 1988). 

The dependence of galaxy morphology on density of their surroundings which 
affects luminosity function can be an extra argument there. The necessity or 
possibility of coagulation processes appears in theoretical models of galaxy 
formation (Shandarin, Doroschkevich and Zeldovich, 1983; Quinn, 1990). 

Further we shall restrict oursleves to some statistic consequences of the 
merging process which gives a joint distribution function in masses and momenta 
of galaxies when the suggestion that collision of galaxies is inelastic but mass and 
rotational momentum (spin) are conserved in the system is made. We will 
disregard probability dependence on spin moment. Also we will from the present 
ignore the role of orbital momentum of pair impacting galaxies taking into 
account the relatively small value of impact parameter (arm moment) in the case 
of merging. Of course here we make not only qualitative errors but also overlook 
effects such as the appearance of rotational momentum in off-center collisions of 
elliptical galaxies, see Barausov, Ushakov, Chernin (1988). 

But in this assumption we can assert our problem in the closed form for kinetic 
equation (KE) in describing coagulation with regard for momentum and mass 
conservation and we have succeeded in solving it under certain limitations (Kats 
and Kontorovich, 1989; 1990). 

2. THE KINETIC EQUATION OF COAGULATION WITH MASS AND 
MOMENTUM CONSERVATION 

Let us consider the mass and momentum galaxy distribution function f ( M ,  S; t )  to 
be governed by the generalized Smoluchowsky KE which describes particles (here 
we have galaxies) coalescence with mass M and rotational momentum S (classical 
variant of spin) being conserved. This KE has the form: 

df= at ldM, dM2 dS, dS2[U6,6,f,f, - 3 - 331. (1) 

Here the transition probability U6& contains two &functions which express the 
conservation laws in the coagulation process 6, = 6 ( M  - M ,  - M2), 6, = 6(S - 
S1 - S2), indices in coefficient U are omitted: U = UMS~MlSlMZS2, shortened 
designations are used for: fi - f ( M , ,  S,; t )  and so on; arrows 3 and 33 as in (1) 
denote cyclic rearrangements of indices. At first, let us consider the factor of 
coagulation U as a constant. (Similar investigation is possible for all probabilities 
in which coefficient U does not depend on momentum and the mass dependence 
is such that Srnoluchowsky KE is integrable.) Making use of Laplace transforma- 
tion over mass and Fourier over spin (in short it is simply Fourier) f ( M ,  S; t)-+ 
9 ( p ,  q; t )  and adding the source-function we will get KE for 9 in the form 

where n(t)  = 9 ( 0 ,  0; t )  is a “concentration” of galaxies. 
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INTERACTION OF GALAXIES 185 

3. THE STATIONARY SOLUTION 

An asymptotic solution for large values of M and S is sufficiently universal and is 
defined by contribution of small p and q in 

where n, = W U ,  Do = 9(0,0) and M,, S, and .S; are the characteristic source 
mass, momentum and its square. Note the change in notation; in (3) and 
corresponding occasions below we will use S; instead of 2s: in terms of our 
papers (1989,1990). Conversion in (3) over p is determined by branch point, then 

I 
I \ 
I \ 
I \ 
I I;’: 
I 
I 
I 
I 
I 

I 
I 

(S-MSI)* 
f(M, S) = M - ’ e - M  

s, = 0 , 2  

TI Is: 

2 4 6 8 10 12 15 M 

Figure 1 
depends on S and M a S2. The masses are measured in M, units and momenta are in fiS2. 

The mass distribution for the fixed momentum in the stationary case. The maximum value 
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3 I 
/ 

M 
Figure 2 Lines of f (M, S) maxima. For fixed M (solid line) and S (dotted line), and anisotropic 
distribution for S//S, .  

conversion over q is turned to Gauss integral calculation. So we obtain the result 

Here J = MOD” is the mass flux along the spectrum defined by the source, the 
g(a, p)  function defines momentum distribution for fixed mass and is normalized 
to unify. f , , (M)  is the stationary mass function (see Figures 1, 2). Integration (4) 
over masses leads to the momentum distribution f,,(S) = n,S2/(.\/Z n2S4) in the 
isotropic case. 

On the other hand the integration (4) over momenta gives us f , , (M)  M-”2 
what is close to the observed value for cosmic clouds (see review by Elmegreen 
1990 and below). 

4. EVOLUTION OF INITIAL DISTRIBUTION 

Let us examine another assertion of our problem when there is not a permanently 
acting source but only an initial distribution which we will take in one-modal form 
with characteristic massscale &l some anisotropy S and distribution function in 
momenta with width (S2)l’*. In the case of large values of masses and momenta 
our solution may be found from expansion of initial function at p ,  q+OLThen 
integral over p is equal to the residue in the pole p = - (r-’  + iqS + i q2S2)  and 
after that Gauss integral over q appears. So we have 

f ( M ,  1 )  = no(Mz2)-’ exp ( - M / & l t ) .  (8) 
Here = Un,t, 110 is the initial concentration, g is defined in ( 5 ) .  In the isotropic 
case (S = 0) at  the fixed S # 0 the mass function has a maximum, which decreases 
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7 =  10 

I , , ,  c 
1 3 5 10 15 M 

Figure 3 The evolution of initial distribution localized at small mass region in the isotropic case. 

and shifts towards the large masses when t is increasing accordingly to M a z, 
Figure 3. 

5. COSMOLOGICAL EXPANSION 

The number of objects in a comoving volume a3(t) is not changed when we 
neglect collisions so assuming the time dependence via expansion to be 
separated in U: U-* ox(t), we can be convinced (following Silk and White (1978) 
that for fu3(t) = f ( M ,  S; f )  where 
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188 A.  V. KATS AND V. M. KONTOROVICH 

the KE is represented in the form (1) with time-independent coalescence 
coefficient 0. That is why we get the solution of the “initial” problem from (8) by 
exchanging no-+ nOa3(t, ,) /a3(t) ,  t+ Z - fo where Z = Z ( t )  = noZ%(t), fO = ?(to). 
The Z ( t )  dependence is defined by expansion law a( t )  and time-dependent 
probability U = 7% also. (For example it can be because of the average velocity 
change during expansion.) The most interesting point is the power function of 
u3( t ) /a3( t0)  - (t/to)* which for A = 2 corresponds to the Einstein-de Sitter 
universe, and for A = 3  corresponds to the “empty” universe. As for ~ ( t ) ,  it is 
natural to take it in the power law form ~ ( t )  - t p .  Then 5 = noOtp’+ l -A / (p  + 1 - A) 
and the number of coalescences per unit time increases with t decreasing under 
realistic conditions of A > p. 

6. EVOLUTION WITH THE SOURCE INCLUSION 

The solution of KE (2) may be easily analyzed for the case when the time 
independent source is switched on at t = 0. For large time z = Un,t >> 1 and 
M, S+ ~0 only small p and q are essential and using the same 9 ( p ,  q) expansion 
as in sect. 3 (and the same designations) we obtain the solution in the form (7) 
with 

The sum in (9) is the derivative of a Weierstrass elliptical function. When 
M / M o t 2 >  1 it is enough to leave only the first term I = 0 that gives the 
exponential tail of the distribution. On the other hand when M/Moz2 << 1 (“small 
masses”) about (Mo/M)’”z terms are important in the sum and so it is 
proportional to (MOt2/M)3’2. In this case (9) gives the stationary distribution (4) 
which is thus formed behind the front that shifts in the large mass region 
according to the law M - Mot2. 

Let us in a brief way consider the problem when the source is switched off after 
it has been working for a long time so that the distribution (9) and its 
quasistationary intermediate asymptotic (6) managed to be established (the 
number of collisions t, = n,Ut, >> 1). Let (9) be the initial condition at t = t,. 
After switching off the source for a small time (so that t = Un,,t << 1) the 
distribution at M >> Mo is practically unchanged. At z >> 1 a “switching off’ front 
M - M o t 2  will go over the stationary part of the distribution (9), i.e. the 
spectrum becomes less steep because of small mass depletion and decreases as z 
increases at fixed M. For M >> Mot2 the distribution remains undisturbed. 

Thus, if an undisturbed region of the stationary spectrum M >>Mot2 is to 
remain after the course is switched off, it is necessary that t, >> t i.e. the number 
of collisions that form the stationary distribution (t,) should be much larger 
(7, >> t) then the one after the “switching off’ (Figure 4). 

In the expanding Universe this can easily be the case because of rapid 
decreasing of the collision probability due to expansion. 
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I 
I I 

' L  
/ I  

T2 7: ' M/Mo 

Figure 4 Mass function relaxation after switching off the source acting during finite time I * .  

7. THE SELF-SIMILAR SOLUTIONS AND SCHECHTER FUNCTION 

One can see from the distribution in the presence of a source (9) that the mass 
function is well described asymptotically by an interpolation formula that 
coincides with the Schechter function used to describe the distribution in 
luminosities L (and masses M - L) of the field galaxies and clusters 

f ( M )  = cp*(M/M*)" exp ( - M / M * )  (10) 
with a = -3/2, M *  = 4M0z2/n2. The Habble morphological types of galaxies can 
be classified over the values of reduced angular momentum f = S/mk. The above 
obtained asymfitotics define the mass functions for a given f f s ( M ,  t) dS6( 5 - 
S / M k ) f ( M ,  S; t) and they also have the form of Schechter functions with the 
parameters: ac = 3/2, (Adz)-' = (ur)-' + C2M/2S2; cr = 0, M* = Mz and ac = 0, 
(MT)-' = n2/4Moz2 + C2M0/2Sz for the isotropic variants of spectra (7) or (9) 
respectively and k = 1. Following Genkin and Genkina (1973), Fall (1983), Kats, 
Kontorovich (1990), the k value equals (3 + p)/2 ( p  is the power in mass-radius 
relation, see Appendix) which for constant density gives k = 5/3. This leads to 
as = crs + 3k where as is the power in f ( M ,  S) = M f f s g ( S 2 / M )  and the mass 
distribution does not take Schechter's form but is close to it. 

Thus, the power law in (10) may correspond to the stationary spectrum (taking 
into account the above mentioned averaging over f) and the exponential decay to 
the time dependent front coalescence. It is worth mentioning that this inter- 
pretation differs from that of Silk, White, 1978 where a Schechter function with 
index -3/2 corresponds to the evolution of the initial spectrum for U (MI + M2) 
(solution due to Trubnikov). 
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190 A. V. KATS AND V. M. KONTOROVICH 

It has to be noted that the model with the source inclusion leads to the effective 
decreasing of the exponent in the power distribution function in comparison with 
-3/2 value (for U=const) due to the source obviously decreasing caused by 
expansion. (Compare with solutions in sect. 3 and 6.) 

When U c~ VM" (u # 0) it is possible to solve the Smoluchowsky equation for 
f ( M ,  t )  only in special cases (see for example the paper of Trubnikov (1971) and 
reviews of Sofronov and Vityazev, 1983, Voloshchuk, 1984, Elmegreen, 1990). 
Some important information may be obtained from self-similar solutions (Vol- 
oshchuk, 1984). For example, in the source presence the corresponding self- 
similar mass function has for homogeneous U the following form 

f ( M ,  t> =f,t(M)V(MIJUt2) (1 1) 

where frt denotes stationary solution f , , (M)  - (J /V)1 /2M-( ' r+2 /3 )  and yj(x-+O)-+ 1 
( M / J U t 2  - M1-"/JVr2). As it can be easily proved for U being independent of S 
the KE (1) solution has the factorized form (7) with f ( M ,  t )  from Eq. (1). The 
g-function form in (7) follows from the simple fact that when the number n of 
coalescent randomly oriented spins of the order (SY" with masses 2- M,, is large 
n >> 1 the characteristic squared momentum S2 = nS2 and the characteristic mass 
M = nMo. The second argument in g is independent of n while the first describes 
the linear growth of mean S value with increasing n for S # 0. 

Thus we obtain 

u + 3  
2 '  

a=-- M * ( t )  = ( Jv t y - " ) ,  

a< = 4 2 ,  ( q - 1  = (Jvt2)-'/('-") + (2M"/SZ. 

Here we have to note that representation (11) is valid only for homogeneity 
index values u < 1 (the case U = const, u = 0 is the simplest example for ii < 1) 
when distribution ''slowly'' shifts to the M = 00 re ion with the front moving 
according to the law (11) Mmt2/( ' -")  or M ~ t l ' ( ' - ~ ~  for the initial distribution 
evolution without the source. Instead of this scenario for u > 1 evolution has 
"explosive" character (see for example, Trubnikov's solution for U -- M 1 M 2  and 
other examples in Voloshchuk, 1984), i.e. the relaxation process achieves M = OJ 

at finite moment t,, depending on initial distribution and/or on source para- 
meters. The shift of characteristic distribution mass in this case may be estimated 
as M a (&, - t)- l '(U-')  (or (tcr - t ) -2/(U-')  for source being included). The "ex- 
plosive" case and its possible role in galaxy mass function formation are discussed 
in the author's and Krivitski's article. 

Recently the evolution of the initial distribution localized at small mass region 
(with exploration of galaxy accounting observational data) was analyzed by 
Khersonskii, Voshchinnikov (1991), which started from coalescence probability 
decreasing with relative velocity increasing as its square (see Appendix, = 1). In 
this case the U homogeneity power equals 4/3 ( p  = 1/3, U cc ( M I  + M2)(Mi'3 + 
M:I3) both for small and large masses (contact and gravitational collisions), 
instead of which the authors make use of the exact solution for U CK ( M ,  + M2) 
changing the + Mil3) factor by its mean value. Some results are illustrated 
in Figure 5.  
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I I I 1 

log W M o )  

Figure 5 The galaxy mass spectra evolution from initial epoch with the red shift z, to present one, 
z = 0 for 5 = 1 in accordance with Khersonskii, Voshchinnikov (1991) (solid line). The dotted line 
corresponds to the observational galaxy mass spectrum. 

8. COALESCENCE-INDUCED ACTIVITY 

Therefore we will further proceed from the viewpoint of collision nature of 
activity which makes it possible to apply the kinetic model formulated above for 
calculating the luminosity function (LF) of quasars for whch reliable data are 
available (Koo and Kron, 1988; Boyle et al., 19887). 

Whereas LF of galaxies reflects their mass distribution, the luminosity 
distribution of active objects (Seyfert galaxies, radio galaxies, quasars) is 
immediately connected with the mechanism of activity: accretion to a compact 
object in the center of the galaxy. In this case, according to the Toomre 
hypothesis (1977), the angular momentum compensation during the galaxy 
merger is responsible for the mass falling at the center. We will calculate the LF 
of active objects (quasars) in terms of this scheme using the galaxy distribution in 
masses and angular momenta obtained above, confining ourselves to-the simplest, 
from the viewpoint of calculation, case of ultimately anisotropic momentum 
distribution of galaxies at large masses. 

tFor  another way of solving the problem see for instance, in Roos (1985), De Robertis (1985), 
Carlberg (1990). Note also the recent reviews by Stocton (1990), Fricke and Kollatshny (1989), 
Kennicutt (1991) and Schlosman (1991), which we have not seen yet so references are based on the 
preprint by Heckman (1990). 
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9. ACTIVITY MODEL AND LUMINOSITY FUNCTION OF QUASARS 

The model under consideration relates the fractions of excessive mass of the disk 
Am capable of making its way to the center to masses M and momenta S of 
colliding galaxies, see Figure 6. The real problem complexity is so high (see the 
state of the problem in Hernquist’s review article) that we will confine ourselves 
to the simplest phenomenological model. The latter takes into account only the 
conservation laws at merging M = M, + M2, S = S1 + S2 and the relation between 
the execessive mass and the disk masses: Am = m ,  + m2 - m where the disk mass 
m = ( S / M 2 ’ 3 ) ( p 2 ’ 3 / a )  ( m  << M ,  p is the density). The luminosity L of an active 
object (quasar) is proportional to A m :  L = BAm, B = .qc2/tac where q is the 
excessive mass portion actually making its way to the center, t,, is the accretion 
time (Am - Am/tac, E is the process efficiency). 

For the distribution in luminosities or, which is the same, in Am (with an 
accuracy to tac(L) dependence that can be readily taken into account), we will 
start from the equation 

= zAm -f(Am)/tact, 

dAm = 6[Am - (ml  + m2 - m ) ] ,  dz  = dM dMl dM2 dS dS, dS2. 

The integral term ZAm in (13) describes the rate of active object formation with 
the mass excess Am due to merges, the second term being their rate of decrease 
due to radiation and so on. The coefficient U = 5, where (T is the cross-section 
and is the relative velocity. The joint functions of mass and momentum 
distribution f ( M ,  S) will be considered as the known ones (either from observa- 
tions or as solutions of appropriate kinetic equations). 

In the stationary case, it follows from (13) that 

which will be compared with the stationary part of LF in quasars. 

Figure 6 Model representation of the galaxy with mass M ,  angular momentum S and disk mass m 
and the merger process leading to the disk mass excess Am. 
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10. LF AT STRONG ANISOTROPY OF MOMENTUM DISTRIBUTION 

As it follows from sufficiently general considerations, the momentum distribution 
f ( M ,  S) for masses that are large compared with the characteristics mass Mo of 
the source (or of the initial distribution) takes the Gaussian form named above as 
g (see Eq. ( 5 )  and discussion after (11)). 

At sufficiently large masses (S0(M/M0)'" >> (~ ) ' " )  the momentum dispersion is 
small and the function g becomes so sharp that it can be substituted by the 
b-function 

The sharpness of distribution (15) makes it possible to integrate (13) over the 
momenta. At U = const, p = const, a + 1 < 0 

According to the data reported by Koo and Kron (1988), the exponent of 
stationary? power-type section slope @ ( L )  - L y  of LF in quasars (at the weak 
end) is equal to y = -1. According to Boyle et al. (1988), y = -1.4 f 0.2. The 
possible minor deviation from -1 is not very relevant for us. 

The known exponent of the Schechter function a =  -1.25 (see review by 
Gorbatsky, 1986) is not sufficiently close to the required one by virtue of the 
rather sharp dependence on a in (16). 

It is important, however, that this value of a is determined by the data 
obtained for clusters. In his recent work Tully (1988) (see also the review article 
by Bingelli, Sandage and Tammann 1988) gives the value (Y = -1.0 for field 

I 1 
I I 

LI L2 L 

Figure 7 Stationary luminosity function of quasars corresponding to M F  exponent of galaxies 
a= - I .  The exponents in lateral regions are model-dependent. 

t If the observed LF evolution is really of a radiation character at the bright end of the previously 
established stationary LF. 
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194 A. V. KATS A N D  V. M. KONTOROVICH 

galaxies (in the present epoch). Thus, we obtain the correspondence between the 
LF index of quasars y = - 1 and the MF index of field galaxies cy = - 1, see Figure 
7.  

The other approach to this problem is based on the explosive scenario (see 
author's article with Krivitski 1992). Note that if the galaxy mass spectrum is also 
formed as a result of coalescence (as it is for the explosive scenario, for example), 
then the essential increasing of the number of collisions is needed in comparison 
with gas-kinetic estimation (for instance, due to (local) increasing of galaxy 
concentration). 

APPENDIX 

THE COALESCENCE COEFFICIENT FOR GRAVITATIONAL AND 
CONTACT COLLISIONS 

We will use for the cross-section u the simplest form 

where 2 G M / R v 2  is the gravitational focusing factor, R = R ,  + R2, M = M I  + M,, 
v = v1 - v,; R,,,, v , , ~  are radii, masses and velocities of colliding objects, 
and q represents the conditional probability of coalescence for the head-on 
collisions. The coalescence coefficient U = 7% where the bar denotes average 
according to velocity distribution 

= /dPl dp, * . . X(PI/M;Y)X(P,/M;). 

The integration is carried out by moments pl,, of colliding particles, x is 
normalized velocity distribution function (I dpX(p/M") = l), index a equals 112 
for Maxwellian distribution and unity for Lynden-Bell distribution, see Vinoku- 
rov et al. (1985). (Do not confuse the a here with Schechter's index). 

Both for small (contact collisions) and large (grav&ationalcollisions) average 
gravitational focusing parameter values y = 2 G M / R v 2  = vi/v2 the coefficient U 
becomes a homogeneity mass function (in symbolic form U - M u ) .  The homoge- 
neity power u for R M p  equals? 

2 + p - a  y >> 1 
U =  2 / 3 - 1 + 5 ( 3 - / 3 ) + ~ ~ ( 1 - 2 E )  y<<1,  l j < 2  

{ 5 - 3 a  y < < l ,  E > 2 .  
The explicit U form for a = 1 is 

U - J C R ~ V , Y ~ / ~ I ( ~ )  

~ ( y )  = r & x (  0 1 + X l),y(x)e-yx 

t There is a mistake in Appendix of the author's work (1990): the restriction < 2 was not indicated 
so the correct result for > 2 was absent. 
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and leads for Q, being a step function (it is equivalent to 5 >> 1) to the following U 
asymptotics: 

for “large” masses (“cold” galaxy system) and 

for “small” masses (“hot” galaxy system). The radii in the last case vanish in the 
final result as it has to be for 5 > 2. Note that we have omitted numerical factors 
of the order of unity. 

The above expressions for 5 > 2 may be obtained in the following (not perfectly 
exact) way: the coalescence condition means that the total energy of the new 
system has to be negative and if we assume all members of a collision to be in 
virial equilibrium then it leads to the v < vg for the relative velocity, i.e. to the 
v-function of the step form: Q, 0: 8(v, - v) (see Khersonskii and Voschchinnikov 
(1990), for example). The more detailed form leads to the condition which 
contains not only the masses sum but also the reduced mass and as a consequence 
of the more complete mass dependence what manifests, for example, in U 
asymptotics. 

The main problem consists in the necessity to take into account the tidal 
interaction which may transfer the galaxies from hyperbolic to elliptical orbit and 
also ensure the coalescence from the last. Qualitatively this was clear even for 
Holtzmark (see Tremain’s (1982) review) who was the pioneer of investigations in 
this area, but the difficulties are not solved just yet (see the review by Alladin and 
Narasimhan (1982) and Saslaw’s (1987) monograph). 

U = J G R ~ v , ~ ’ ”  0: (MI + M2)(Mf + M?), y >> 1 

U = nR2v,y3” = C(M, + M2)’, C - G2/03,  y << 1 
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