
Lecture 9. Stellar evolution in binary 
systems. Roche model. Evolutionary 
scenarios for massive and low-mass 
binaries. Non-conservative evolution 

(common envelopes, gravitational 
radiation, magnetic stellar wind)
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Potential in X-Y  plane 
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Algol (β Per) paradox: early-type
component is heavier than
the late-type one!

Key to solution: component
mass reversal due to
mass transfer at earlier stages!

0.8 M G5IV      3.7 B8 V

3/11/2005 Lecture 9 page 14 of  42



3/11/2005 Lecture 9 page 15 of  42



3/11/2005 Lecture 9 page 16 of  42



Mass loss depends on 
which stage of evolution 
the star fills its Roche lobe

If star is isentropic (e.g. 
deep convective envelope 
-- RG stage), mass loss tends 
to increase R with decreasing M
which generally leads to
unstable mass transfer 
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Three cases of 
mass transfer loss
by the primary star
(after R.Kippenhahn)

In most important case B
mass transfer occurs on
thermal time scale:

dM/dt~M/τKH , τKH=GM2/RL

In case A: on nuclear time
scale:  

dM/dt~M/tH
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Ballistic (planar) trajectories must self-intersect:

So energy must be lost, but angular momentum is 
conserved formation of a ring 
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… and 3D SPH hydrodynamics confirms it:

J. Blondin
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Formation of accretion disks

3/11/2005 Lecture 9 page 25 of  42



Accretion from stellar wind (without RL overflow) 
is possible  in high mass binaries (e.g. Vela X-1, 
most X-ray pulsars with Be-stars, Cyg X-1-type BHC,
etc)
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Generally, wind accretion 
is quasi-stationary
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Problem: How to make close binaries
with compact stars (CVs, XRBs)?
Most angular momentum from the 
system should be lost. 

Non-conservative evolution:
Common envelope stage
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Angular momentum loss:

• Magnetic stellar wind
(effective for main      
sequence stars with 
convective envelopes 
0.3<M<1.5 M )

• Gravitational radiation
(drives evolution of 
binaries with P<15 hrs)

Especially important
for evolution of low-mass
close binaries!
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Intermezzo: Gravitational radiation from a binary star. 

An easy way to get a complex formula.

2
2 1 2

1 2

1

3

1 2 2 1 2

Binary star:             M , M ,  .       Assume circular orbit.
, in Newtonian case.

Kepler's 3d law:      

Gravitational radiation is due to variab

( )2

le quadrup

G M M
T

a
M a M a a a

a

a const

πω +⎛ ⎞≡ =⎜ ⎟
⎝ ⎠

= = + =

G

l

W
22 ,

ole moment 
of the system. Q.m. is the same twice the orbital period 

                         

Wave zone:              ~ Field ~ 1/r for radiation

Inside W.z. (r<R

2

) the field i

2GW

l
cr R

c cTπω ω λ
ω

ω

= = =

⇒

>

1
13 3

2
23 3

1 2
1 2

s just variable tidal accelerations:

GMmass 1:    ~  a ~
r

GMmass 2:   ~  a ~ ,    
r

where  is reduced mass,  is the total mass

G a
r
G a
r

M M M M M
M

µ

µ

µ ≡ ≡ +

B

M1

M2

3/11/2005 Lecture 9 page 32 of  42



Wave zone
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Magnetic stellar wind
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1/ 2

2 2

Axial rotation braking of single G-dwarfs (Skumanich, 1972)
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Mass loss due to MSW and GW
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Mass transfer due to orbital angular momentum losses
occurs because Roche lobe radius is proportional to 
binary separation: R ( , ). So by requiring 
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MSW is more effective at 
larger orbital periods, but 
GW always wins at shorter
periods! Moreover, MSW
stops when M2 ~0.3-0.4 M
where star becomes fully
convective and dynamo 
switches off.
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Hundreds close XRB and millisecod
pulsars are found in globular 
clusters

Formation of close low-mass
binaries is favored in 
dense stellar systems due to 
various dynamical processes
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Binary pulsars

PSR 1913+16
(1974)

2005: 
7 binary NS 
systems R.A. Hulse J.B. Taylor

Nobel prize in physics
1993

Evolution of binary parameters in 
double NS is fully controlled
by GW emission.

Coalescent binary neutron stars 
and black holes are thought to be 
the primary astrophysical sources
of gravitational waves
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Binary evolution: Major uncertainties

• All uncertainties in stellar evolution (convection 
treatment, rotation, magnetic fields…) 

• Limitations of the Roche approximation 
(synchronous rotation, central density 
concentration, orbital circularity)

• Non-conservative evolution (stellar winds, common 
envelope treatment, magnetic braking…)

• For binaries with NS (and probably BH): effects of 
supernova asymmetry (natal kicks of compact 
objects), rotational evolution of magnetized compact 
stars (WD, NS) 
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